Shawn’s Blog
  • 🗂️ Collections
    • 🖥️ Slides Gallery
    • 💻 LeetCode Notes
    • 🧑‍🍳️ Cooking Ideas
    • 🍱 Cookbook
    • 💬 Language Learning
    • 🎼 Songbook
  • ⚙️ Projects
    • ⚛ Continual Learning Arena
  • 📄 Papers
    • AdaHAT
    • FG-AdaHAT
  • 🎓 CV
    • CV (English)
    • CV (Mandarin)
    • CV (Mandarin, Long Version)
  • About
  1. Custom Implementation
  • Welcome to CLArena
  • Getting Started
  • Configure Pipelines
  • Continual Learning (CL)
    • CL Main Experiment
    • Save and Evaluate Model
    • Full Experiment
    • Output Results
  • Continual Unlearning (CUL)
    • CUL Main Experiment
    • Full Experiment
    • Output Results
  • Multi-Task Learning (MTL)
    • MTL Experiment
    • Save and Evaluate Model
    • Output Results
  • Single-Task Learning (STL)
    • STL Experiment
    • Save and Evaluate Model
    • Output Results
  • Components
    • CL Dataset
    • MTL Dataset
    • STL Dataset
    • CL Algorithm
    • CUL Algorithm
    • MTL Algorithm
    • STL Algorithm
    • Backbone Network
    • Optimizer
    • Learning Rate Scheduler
    • Trainer
    • Metrics
    • Lightning Loggers
    • Callbacks
    • Other Configs
  • Custom Implementation
    • CL Dataset
    • MTL Dataset
    • STL Dataset
    • CL Algorithm
    • CUL Algorithm
    • MTL Algorithm
    • STL Algorithm
    • Backbone Network
    • Callback
  • API Reference
  • FAQs

On this page

  • Implement CL Modules Outside the Package
  • Contributing to CLArena

Custom Implementation Guide

Modified

October 6, 2025

This section will guide you to implement your own CLArena components, including:

Component Description
CL Dataset Continual learning dataset
MTL Dataset Multi-task learning dataset
STL Dataset Single-task learning dataset
CL Algorithm Continual learning algorithm
CUL Algorithm Continual unlearning algorithm
MTL Algorithm Multi-task learning algorithm
STL Algorithm Single-task learning algorithm
Backbone Network The backbone neural network architecture
Metrics The evaluation metrics used to assess model performance
Callbacks The callbacks (additional operation hooks) used during training and evaluation

Implement CL Modules Outside the Package

You can implement your custom components anywhere outside the package source code, and specify them in your configs for experiments and evaluations.

To properly locate your implement module for the config, you need to add the path of your module to the environment variable PYTHONPATH. This should be done in the beginning of every terminal sessions. Either do it once by:

export PYTHONPATH=<path-to-your-module>

or set it every time the command is executed:

PYTHONPATH=<path-to-your-module> clarena ...

Contributing to CLArena

If you’re interested in contributing to this package with your custom modules, feel free to submit a pull request!

Source Code GitHub Pull Request

Back to top
Other Configs
CL Dataset
 
 

©️ 2025 Pengxiang Wang. All rights reserved.