Shawn’s Blog
  • πŸ—‚οΈ Collections
    • πŸ–₯️ Slides Gallery
    • πŸ§‘β€πŸ³οΈ Cooking Ideas
    • 🍱 Cookbook
    • πŸ’¬ Language Learning
    • 🎼 Songbook
  • βš™οΈ Projects
    • βš› Continual Learning Arena
  • πŸ“„ Papers
    • AdaHAT
    • FG-AdaHAT
  • πŸŽ“ CV
    • CV (English)
    • CV (Mandarin)
  • About
  1. Components
  2. STL Dataset
  • Welcome to CLArena
  • Getting Started
  • Configure Pipelines
  • Continual Learning (CL)
    • CL Main Experiment
    • Save and Evaluate Model
    • Full Experiment
    • Output Results
  • Continual Unlearning (CUL)
    • CUL Main Experiment
    • Full Experiment
    • Output Results
  • Multi-Task Learning (MTL)
    • MTL Experiment
    • Save and Evaluate Model
    • Output Results
  • Single-Task Learning (STL)
    • STL Experiment
    • Save and Evaluate Model
    • Output Results
  • Components
    • CL Dataset
    • MTL Dataset
    • STL Dataset
    • CL Algorithm
    • CUL Algorithm
    • MTL Algorithm
    • STL Algorithm
    • Backbone Network
    • Optimizer
    • Learning Rate Scheduler
    • Trainer
    • Metrics
    • Lightning Loggers
    • Callbacks
    • Other Configs
  • Implement Your Modules (TBC)
  • API Reference
  1. Components
  2. STL Dataset

Configure STL Dataset (STL)

Modified

August 30, 2025

The single-task learning dataset is a single dataset which has training, validation and test data.

STL dataset is a sub-config under the index config of:

  • Single-task learning experiment and evaluation

To configure a custom STL dataset, you need to create a YAML file in stl_dataset/ folder. Below shows examples of the STL dataset config.

Example

configs
β”œβ”€β”€ __init__.py
β”œβ”€β”€ entrance.yaml
β”œβ”€β”€ index
β”‚   β”œβ”€β”€ example_stl_expr.yaml
β”‚   └── ...
β”œβ”€β”€ stl_dataset
β”‚   └── stl_mnist.yaml
...
configs/index/example_stl_expr.yaml
defaults:
  ...
    - /stl_dataset: stl_mnist.yaml
  ...
configs/stl_dataset/stl_mnist.yaml
_target_: clarena.stl_datasets.STLMNIST
root: data/MNIST
validation_percentage: 0.1
batch_size: 64

Supported STL Datasets & Required Config Fields

In CLArena, we have implemented many STL datasets as Python classes in clarena.stl_datasets module that you can use for your experiments and evaluations.

To choose a STL dataset, assign the _target_ field to the class name of the STL dataset. For example, to use the MNIST dataset, set _target_ field to clarena.stl_datasets.MNIST. Each STL dataset has its own hyperparameters and configurations, which means it has its own required fields. The required fields are the same as the arguments of the class specified by _target_. The arguments of each STL dataset class can be found in API documentation.

<i class=β€œbi bi-book”></i> API Reference (STL Datasets) <i class=β€œfa-brands fa-github”></i> Source Code (STL Datasets)

Below is the full list of supported STL datasets. We only support image classification datasets. Note that the β€œSTL Dataset” is exactly the class name that the _target_ field is assigned.

STL Dataset Description Required Config Fields
STLMNIST MNIST dataset. The MNIST dataset is a collection of handwritten digits. It consists of 60,000 training and 10,000 test images of handwritten digit images (10 classes), each 28x28 grayscale image. Same as MNIST class arguments
Back to top
MTL Dataset
CL Algorithm
 
 

©️ 2025 Pengxiang Wang. All rights reserved.