clarena.stl_datasets.imagenette
The submodule in stl_datasets for Imagenette dataset.
1r""" 2The submodule in `stl_datasets` for Imagenette dataset. 3""" 4 5__all__ = ["Imagenette"] 6 7import logging 8from typing import Callable 9 10import torch 11from torch.utils.data import Dataset, random_split 12from torchvision.datasets import Imagenette as ImagenetteRaw 13from torchvision.transforms import transforms 14 15from clarena.stl_datasets.base import STLDatasetFromRaw 16 17# always get logger for built-in logging in each module 18pylogger = logging.getLogger(__name__) 19 20 21class Imagenette(STLDatasetFromRaw): 22 r"""Imagenette dataset. The [Imagenette dataset](https://github.com/fastai/imagenette) is a subset of 10 easily classified classes from [Imagenet](https://www.image-net.org). It provides full sizes (as Imagenet), and resized 320x320 and 160x160. We support all of them in Permuted Imagenette.""" 23 24 original_dataset_python_class: type[Dataset] = ImagenetteRaw 25 r"""The original dataset class.""" 26 27 def __init__( 28 self, 29 root: str, 30 size: str, 31 validation_percentage: float, 32 batch_size: int = 1, 33 num_workers: int = 0, 34 custom_transforms: Callable | transforms.Compose | None = None, 35 repeat_channels: int | None = None, 36 to_tensor: bool = True, 37 resize: tuple[int, int] | None = None, 38 ) -> None: 39 r""" 40 **Args:** 41 - **root** (`str`): the root directory where the original Imagenette data 'Imagenette/' live. 42 - **size** (`str`): image size type. Supports "full" (default), "320px", and "160px". 43 - **validation_percentage** (`float`): the percentage to randomly split some training data into validation data. 44 - **batch_size** (`int`): The batch size in train, val, test dataloader. 45 - **num_workers** (`int`): the number of workers for dataloaders. 46 - **custom_transforms** (`transform` or `transforms.Compose` or `None`): the custom transforms to apply to ONLY TRAIN dataset. Can be a single transform, composed transforms or no transform. `ToTensor()`, normalize and so on are not included. 47 - **repeat_channels** (`int` | `None`): the number of channels to repeat. Default is None, which means no repeat. If not None, it should be an integer. 48 - **to_tensor** (`bool`): whether to include `ToTensor()` transform. Default is True. 49 - **resize** (`tuple[int, int]` | `None` or list of them): the size to resize the images to. Default is None, which means no resize. If not None, it should be a tuple of two integers. 50 """ 51 super().__init__( 52 root=root, 53 batch_size=batch_size, 54 num_workers=num_workers, 55 custom_transforms=custom_transforms, 56 repeat_channels=repeat_channels, 57 to_tensor=to_tensor, 58 resize=resize, 59 ) 60 61 self.size: str = size 62 r"""The size type of image.""" 63 64 self.validation_percentage: float = validation_percentage 65 r"""The percentage to randomly split some training data into validation data.""" 66 67 def prepare_data(self) -> None: 68 r"""Download the original Imagenette dataset if haven't.""" 69 70 ImagenetteRaw(root=self.root, split="train", size=self.size, download=True) 71 ImagenetteRaw(root=self.root, split="val", size=self.size, download=True) 72 73 pylogger.debug( 74 "The original Imagenette dataset has been downloaded to %s.", 75 self.root, 76 ) 77 78 def train_and_val_dataset(self) -> tuple[Dataset, Dataset]: 79 """Get the training and validation dataset. 80 81 **Returns:** 82 - **train_and_val_dataset** (`tuple[Dataset, Dataset]`): the train and validation dataset. 83 """ 84 dataset_train_and_val = ImagenetteRaw( 85 root=self.root, 86 split="train", 87 size=self.size, 88 transform=self.train_and_val_transforms(), 89 target_transform=self.target_transform(), 90 download=False, 91 ) 92 93 return random_split( 94 dataset_train_and_val, 95 lengths=[1 - self.validation_percentage, self.validation_percentage], 96 generator=torch.Generator().manual_seed( 97 42 98 ), # this must be set fixed to make sure the datasets across experiments are the same. Don't handle it to global seed as it might vary across experiments 99 ) 100 101 def test_dataset(self) -> Dataset: 102 r"""Get the test dataset. 103 104 **Returns:** 105 - **test_dataset** (`Dataset`): the test dataset. 106 """ 107 dataset_test = ImagenetteRaw( 108 root=self.root, 109 split="test", 110 size=self.size, 111 transform=self.test_transforms(), 112 target_transform=self.target_transform(), 113 download=False, 114 ) 115 116 return dataset_test
class
Imagenette(clarena.stl_datasets.base.STLDatasetFromRaw):
22class Imagenette(STLDatasetFromRaw): 23 r"""Imagenette dataset. The [Imagenette dataset](https://github.com/fastai/imagenette) is a subset of 10 easily classified classes from [Imagenet](https://www.image-net.org). It provides full sizes (as Imagenet), and resized 320x320 and 160x160. We support all of them in Permuted Imagenette.""" 24 25 original_dataset_python_class: type[Dataset] = ImagenetteRaw 26 r"""The original dataset class.""" 27 28 def __init__( 29 self, 30 root: str, 31 size: str, 32 validation_percentage: float, 33 batch_size: int = 1, 34 num_workers: int = 0, 35 custom_transforms: Callable | transforms.Compose | None = None, 36 repeat_channels: int | None = None, 37 to_tensor: bool = True, 38 resize: tuple[int, int] | None = None, 39 ) -> None: 40 r""" 41 **Args:** 42 - **root** (`str`): the root directory where the original Imagenette data 'Imagenette/' live. 43 - **size** (`str`): image size type. Supports "full" (default), "320px", and "160px". 44 - **validation_percentage** (`float`): the percentage to randomly split some training data into validation data. 45 - **batch_size** (`int`): The batch size in train, val, test dataloader. 46 - **num_workers** (`int`): the number of workers for dataloaders. 47 - **custom_transforms** (`transform` or `transforms.Compose` or `None`): the custom transforms to apply to ONLY TRAIN dataset. Can be a single transform, composed transforms or no transform. `ToTensor()`, normalize and so on are not included. 48 - **repeat_channels** (`int` | `None`): the number of channels to repeat. Default is None, which means no repeat. If not None, it should be an integer. 49 - **to_tensor** (`bool`): whether to include `ToTensor()` transform. Default is True. 50 - **resize** (`tuple[int, int]` | `None` or list of them): the size to resize the images to. Default is None, which means no resize. If not None, it should be a tuple of two integers. 51 """ 52 super().__init__( 53 root=root, 54 batch_size=batch_size, 55 num_workers=num_workers, 56 custom_transforms=custom_transforms, 57 repeat_channels=repeat_channels, 58 to_tensor=to_tensor, 59 resize=resize, 60 ) 61 62 self.size: str = size 63 r"""The size type of image.""" 64 65 self.validation_percentage: float = validation_percentage 66 r"""The percentage to randomly split some training data into validation data.""" 67 68 def prepare_data(self) -> None: 69 r"""Download the original Imagenette dataset if haven't.""" 70 71 ImagenetteRaw(root=self.root, split="train", size=self.size, download=True) 72 ImagenetteRaw(root=self.root, split="val", size=self.size, download=True) 73 74 pylogger.debug( 75 "The original Imagenette dataset has been downloaded to %s.", 76 self.root, 77 ) 78 79 def train_and_val_dataset(self) -> tuple[Dataset, Dataset]: 80 """Get the training and validation dataset. 81 82 **Returns:** 83 - **train_and_val_dataset** (`tuple[Dataset, Dataset]`): the train and validation dataset. 84 """ 85 dataset_train_and_val = ImagenetteRaw( 86 root=self.root, 87 split="train", 88 size=self.size, 89 transform=self.train_and_val_transforms(), 90 target_transform=self.target_transform(), 91 download=False, 92 ) 93 94 return random_split( 95 dataset_train_and_val, 96 lengths=[1 - self.validation_percentage, self.validation_percentage], 97 generator=torch.Generator().manual_seed( 98 42 99 ), # this must be set fixed to make sure the datasets across experiments are the same. Don't handle it to global seed as it might vary across experiments 100 ) 101 102 def test_dataset(self) -> Dataset: 103 r"""Get the test dataset. 104 105 **Returns:** 106 - **test_dataset** (`Dataset`): the test dataset. 107 """ 108 dataset_test = ImagenetteRaw( 109 root=self.root, 110 split="test", 111 size=self.size, 112 transform=self.test_transforms(), 113 target_transform=self.target_transform(), 114 download=False, 115 ) 116 117 return dataset_test
Imagenette dataset. The Imagenette dataset is a subset of 10 easily classified classes from Imagenet. It provides full sizes (as Imagenet), and resized 320x320 and 160x160. We support all of them in Permuted Imagenette.
Imagenette( root: str, size: str, validation_percentage: float, batch_size: int = 1, num_workers: int = 0, custom_transforms: Union[Callable, torchvision.transforms.transforms.Compose, NoneType] = None, repeat_channels: int | None = None, to_tensor: bool = True, resize: tuple[int, int] | None = None)
28 def __init__( 29 self, 30 root: str, 31 size: str, 32 validation_percentage: float, 33 batch_size: int = 1, 34 num_workers: int = 0, 35 custom_transforms: Callable | transforms.Compose | None = None, 36 repeat_channels: int | None = None, 37 to_tensor: bool = True, 38 resize: tuple[int, int] | None = None, 39 ) -> None: 40 r""" 41 **Args:** 42 - **root** (`str`): the root directory where the original Imagenette data 'Imagenette/' live. 43 - **size** (`str`): image size type. Supports "full" (default), "320px", and "160px". 44 - **validation_percentage** (`float`): the percentage to randomly split some training data into validation data. 45 - **batch_size** (`int`): The batch size in train, val, test dataloader. 46 - **num_workers** (`int`): the number of workers for dataloaders. 47 - **custom_transforms** (`transform` or `transforms.Compose` or `None`): the custom transforms to apply to ONLY TRAIN dataset. Can be a single transform, composed transforms or no transform. `ToTensor()`, normalize and so on are not included. 48 - **repeat_channels** (`int` | `None`): the number of channels to repeat. Default is None, which means no repeat. If not None, it should be an integer. 49 - **to_tensor** (`bool`): whether to include `ToTensor()` transform. Default is True. 50 - **resize** (`tuple[int, int]` | `None` or list of them): the size to resize the images to. Default is None, which means no resize. If not None, it should be a tuple of two integers. 51 """ 52 super().__init__( 53 root=root, 54 batch_size=batch_size, 55 num_workers=num_workers, 56 custom_transforms=custom_transforms, 57 repeat_channels=repeat_channels, 58 to_tensor=to_tensor, 59 resize=resize, 60 ) 61 62 self.size: str = size 63 r"""The size type of image.""" 64 65 self.validation_percentage: float = validation_percentage 66 r"""The percentage to randomly split some training data into validation data."""
Args:
- root (
str): the root directory where the original Imagenette data 'Imagenette/' live. - size (
str): image size type. Supports "full" (default), "320px", and "160px". - validation_percentage (
float): the percentage to randomly split some training data into validation data. - batch_size (
int): The batch size in train, val, test dataloader. - num_workers (
int): the number of workers for dataloaders. - custom_transforms (
transformortransforms.ComposeorNone): the custom transforms to apply to ONLY TRAIN dataset. Can be a single transform, composed transforms or no transform.ToTensor(), normalize and so on are not included. - repeat_channels (
int|None): the number of channels to repeat. Default is None, which means no repeat. If not None, it should be an integer. - to_tensor (
bool): whether to includeToTensor()transform. Default is True. - resize (
tuple[int, int]|Noneor list of them): the size to resize the images to. Default is None, which means no resize. If not None, it should be a tuple of two integers.
original_dataset_python_class: type[torch.utils.data.dataset.Dataset] =
<class 'torchvision.datasets.imagenette.Imagenette'>
The original dataset class.
validation_percentage: float
The percentage to randomly split some training data into validation data.
def
prepare_data(self) -> None:
68 def prepare_data(self) -> None: 69 r"""Download the original Imagenette dataset if haven't.""" 70 71 ImagenetteRaw(root=self.root, split="train", size=self.size, download=True) 72 ImagenetteRaw(root=self.root, split="val", size=self.size, download=True) 73 74 pylogger.debug( 75 "The original Imagenette dataset has been downloaded to %s.", 76 self.root, 77 )
Download the original Imagenette dataset if haven't.
def
train_and_val_dataset( self) -> tuple[torch.utils.data.dataset.Dataset, torch.utils.data.dataset.Dataset]:
79 def train_and_val_dataset(self) -> tuple[Dataset, Dataset]: 80 """Get the training and validation dataset. 81 82 **Returns:** 83 - **train_and_val_dataset** (`tuple[Dataset, Dataset]`): the train and validation dataset. 84 """ 85 dataset_train_and_val = ImagenetteRaw( 86 root=self.root, 87 split="train", 88 size=self.size, 89 transform=self.train_and_val_transforms(), 90 target_transform=self.target_transform(), 91 download=False, 92 ) 93 94 return random_split( 95 dataset_train_and_val, 96 lengths=[1 - self.validation_percentage, self.validation_percentage], 97 generator=torch.Generator().manual_seed( 98 42 99 ), # this must be set fixed to make sure the datasets across experiments are the same. Don't handle it to global seed as it might vary across experiments 100 )
Get the training and validation dataset.
Returns:
- train_and_val_dataset (
tuple[Dataset, Dataset]): the train and validation dataset.
def
test_dataset(self) -> torch.utils.data.dataset.Dataset:
102 def test_dataset(self) -> Dataset: 103 r"""Get the test dataset. 104 105 **Returns:** 106 - **test_dataset** (`Dataset`): the test dataset. 107 """ 108 dataset_test = ImagenetteRaw( 109 root=self.root, 110 split="test", 111 size=self.size, 112 transform=self.test_transforms(), 113 target_transform=self.target_transform(), 114 download=False, 115 ) 116 117 return dataset_test
Get the test dataset.
Returns:
- test_dataset (
Dataset): the test dataset.