Shawn’s Blog
  • πŸ—‚οΈ Collections
    • πŸ–₯️ Slides Gallery
    • πŸ§‘β€πŸ³οΈ Cooking Ideas
    • 🍱 Cookbook
    • πŸ’¬ Language Learning
    • 🎼 Songbook
  • βš™οΈ Projects
    • βš› Continual Learning Arena
  • πŸ“„ Papers
    • AdaHAT
    • FG-AdaHAT
  • πŸŽ“ CV
    • CV (English)
    • CV (Mandarin)
  • About
  1. Single-Task Learning (STL)
  2. Configure STL Experiment
  3. STL Dataset
  • Welcome to CLArena
  • Get Started
  • Continual Learning (CL)
    • Configure CL Main Experiment
      • Experiment Index Config
      • CL Algorithm
      • CL Dataset
      • Backbone Network
      • Optimizer
      • Learning Rate Scheduler
      • Trainer
      • Metrics
      • Lightning Loggers
      • Callbacks
      • Other Configs
    • Save and Evaluate Model
    • Full Experiment
    • Output Results
  • Continual Unlearning (CUL)
    • Configure CUL Main Experiment
      • Experiment Index Config
      • Unlearning Algorithm
      • Callbacks
    • Full Experiment
    • Output Results
  • Multi-Task Learning (MTL)
    • Configure MTL Experiment
      • Experiment Index Config
      • MTL Algorithm
      • MTL Dataset
      • Backbone Network
      • Optimizer
      • Learning Rate Scheduler
      • Trainer
      • Metrics
      • Callbacks
    • Save and Evaluate Model
    • Output Results
  • Single-Task Learning (STL)
    • Configure STL Experiment
      • Experiment Index Config
      • STL Dataset
      • Backbone Network
      • Optimizer
      • Learning Rate Scheduler
      • Trainer
      • Metrics
      • Callbacks
    • Save and Evaluate Model
    • Output Results
  • Implement Your Modules (TBC)
  • API Reference
  1. Single-Task Learning (STL)
  2. Configure STL Experiment
  3. STL Dataset

Configure STL Dataset (STL)

Modified

August 16, 2025

The single-task learning dataset is a single dataset which has training, validation and test data.

STL dataset is a sub-config under the experiment index config (STL). To configure a custom STL dataset, you need to create a YAML file in stl_dataset/ folder.

Below shows examples of the STL dataset config.

Example

configs
β”œβ”€β”€ __init__.py
β”œβ”€β”€ entrance.yaml
β”œβ”€β”€ experiment
β”‚   β”œβ”€β”€ example_stl_train.yaml
β”‚   └── ...
β”œβ”€β”€ stl_dataset
β”‚   └── mnist.yaml
...
configs/experiment/mnist.yaml
defaults:
  ...
    - /stl_dataset: mnist.yaml
  ...
configs/mtl_dataset/multi_domain_sentiment.yaml
_target_: clarena.stl_datasets.MNIST
(TBC)

Supported MTL Datasets & Required Config Fields

In CLArena, we also implemented many STL datasets as Python classes in clarena.stl_datasets module that you can use for your experiment.

To choose a STL dataset, assign the _target_ field to the class name of the STL dataset. For example, to use the MNIST dataset, set _target_ field to clarena.stl_datasets.MNIST. Each STL dataset has its own hyperparameters and configurations, which means it has its own required fields. The required fields are the same as the arguments of the class specified by _target_. The arguments of each STL dataset class can be found in API documentation.

<i class=β€œbi bi-book”></i> API Reference (STL Datasets) <i class=β€œfa-brands fa-github”></i> Source Code (STL Datasets)

Below is the full list of supported STL datasets. We only support image classification datasets. Note that the β€œSTL Dataset” is exactly the class name that the _target_ field is assigned.

STL Dataset Description Required Config Fields

MNIST

(TBC)

TBC. Same as MNIST class arguments
Back to top
Experiment Index Config
Backbone Network
 
 

©️ 2025 Pengxiang Wang. All rights reserved.