Shawn’s Blog
  • 🗂️ Collections
    • 🖥️ Slides Gallery
    • 💻 LeetCode Notes
    • 🧑‍🍳️ Cooking Ideas
    • 🍱 Cookbook
    • 💬 Language Learning
    • 🎼 Songbook
  • ⚙️ Projects
    • ⚛ Continual Learning Arena
  • 📄 Papers
    • AdaHAT
    • FG-AdaHAT
  • 🎓 CV
    • CV (English)
    • CV (Mandarin)
    • CV (Mandarin, Long Version)
  • About
  1. Single-Task Learning (STL)
  • Welcome to CLArena
  • Getting Started
  • Configure Pipelines
  • Continual Learning (CL)
    • CL Main Experiment
    • Save and Evaluate Model
    • Full Experiment
    • Output Results
  • Continual Unlearning (CUL)
    • CUL Main Experiment
    • Full Experiment
    • Output Results
  • Multi-Task Learning (MTL)
    • MTL Experiment
    • Save and Evaluate Model
    • Output Results
  • Single-Task Learning (STL)
    • STL Experiment
    • Save and Evaluate Model
    • Output Results
  • Components
    • CL Dataset
    • MTL Dataset
    • STL Dataset
    • CL Algorithm
    • CUL Algorithm
    • MTL Algorithm
    • STL Algorithm
    • Backbone Network
    • Optimizer
    • Learning Rate Scheduler
    • Trainer
    • Metrics
    • Lightning Loggers
    • Callbacks
    • Other Configs
  • Custom Implementation
    • CL Dataset
    • MTL Dataset
    • STL Dataset
    • CL Algorithm
    • CUL Algorithm
    • MTL Algorithm
    • STL Algorithm
    • Backbone Network
    • Callback
  • API Reference
  • FAQs

On this page

  • Definition
  • Supported Pipelines

Single-Task Learning (STL)

Modified

October 6, 2025

Single-Task Learning (STL) is the regular machine learning that trains one task on one dataset.

Definition

In CLArena, single-task learning is specifically designed for classification problems and follows the formal definition below.

Definition 1 (Single-Task Learning Classification) Given:

  • An initialized neural network model f
    • A shared backbone network B
    • An output head
  • Training data: Dtrain={(xi,yi)}i=1N∈(X,Y)
  • Validation data: Dval∈(X,Y)
  • Test data: Dtest∈(X,Y)

Objective: Develop an algorithm that trains the model f to perform well on test dataset Dtest.

Supported Pipelines

CLArena supports the following experiment and evaluation pipelines for single-task learning:

  • Single-Task Learning Experiment: The experiment for training and evaluating single-task learning models. See Single-Task Learning Experiment.
  • Single-Task Learning Evaluation: The evaluation phase for assessing the performance of the trained single-task learning models. See Save and Evaluate Model.
Back to top
Output Results
STL Experiment
 
 

©️ 2025 Pengxiang Wang. All rights reserved.