Shawn’s Blog
  • πŸ—‚οΈ Collections
    • πŸ–₯️ Slides Gallery
    • πŸ§‘β€πŸ³οΈ Cooking Ideas
    • 🍱 Cookbook
    • πŸ’¬ Language Learning
    • 🎼 Songbook
  • βš™οΈ Projects
    • βš› Continual Learning Arena
  • πŸ“„ Papers
    • AdaHAT
    • FG-AdaHAT
  • πŸŽ“ CV
    • CV (English)
    • CV (Mandarin)
  • About
  1. Components
  2. CUL Algorithm
  • Welcome to CLArena
  • Getting Started
  • Configure Pipelines
  • Continual Learning (CL)
    • CL Main Experiment
    • Save and Evaluate Model
    • Full Experiment
    • Output Results
  • Continual Unlearning (CUL)
    • CUL Main Experiment
    • Full Experiment
    • Output Results
  • Multi-Task Learning (MTL)
    • MTL Experiment
    • Save and Evaluate Model
    • Output Results
  • Single-Task Learning (STL)
    • STL Experiment
    • Save and Evaluate Model
    • Output Results
  • Components
    • CL Dataset
    • MTL Dataset
    • STL Dataset
    • CL Algorithm
    • CUL Algorithm
    • MTL Algorithm
    • STL Algorithm
    • Backbone Network
    • Optimizer
    • Learning Rate Scheduler
    • Trainer
    • Metrics
    • Lightning Loggers
    • Callbacks
    • Other Configs
  • Implement Your Modules (TBC)
  • API Reference
  1. Components
  2. CUL Algorithm

Configure Unlearning Algorithm (CUL Main)

Modified

August 26, 2025

Unlearning algorithm is the core part of continual unlearning, determining how requested tasks are learned after training each task.

Unlearning algorithm is a sub-config under the experiment index config (CUL Main). To configure a custom unlearning algorithm, you need to create a YAML file in unlearning_algorithm/ folder. Below shows an example of the unlearning algorithm config.

Example

configs
β”œβ”€β”€ __init__.py
β”œβ”€β”€ entrance.yaml
β”œβ”€β”€ experiment
β”‚   β”œβ”€β”€ example_culmain_train.yaml
β”‚   └── ...
β”œβ”€β”€ unlearning_algorithm
β”‚   └── independent_unlearn.yaml
...
configs/experiment/example_culmain_train.yaml
defaults:
  ...
  - /unlearning_algorithm: independent_unlearn.yaml
  ...
configs/unlearning_algorithm/independent_unlearn.yaml
_target_: clarena.unlearning_algorithms.IndependentUnlearn

Supported Unlearning Algorithms & Required Config Fields

In CLArena, we implemented many unlearning algorithms as Python classes in clarena.unlearning_algorithms module that you can use for your experiment.

To choose a unlearning algorithm, assign the _target_ field to the class name of the unlearning algorithm. For example, to use the IndependentUnlearn algorithm, set _target_ field to clarena.unlearning_algorithms.IndependentUnlearn. Each unlearning algorithm has its own hyperparameters and configurations, which means it has its own required fields. The required fields are the same as the arguments of the class specified by _target_ (excluding model). The arguments of each unlearning algorithm class can be found in API documentation.

API Reference (Unlearning Algorithms) Source Code (Unlearning Algorithms)

Below is the full list of supported unlearning algorithms. Note that the β€œUnlearning Algorithm” is exactly the class name that the _target_ field is assigned.

Unlearning Algorithm Description Required Config Fields
IndependentUnlearn TBC. Same as IndependentUnlearn class arguments (excluding model)
AmnesiacHATUnlearn TBC. Same as AmnesiacHATUnlearn class arguments (excluding model)
Back to top
CL Algorithm
MTL Algorithm
 
 

©️ 2025 Pengxiang Wang. All rights reserved.