clarena.metrics
Metrics
This submodule provides the metric callbacks in CLArena, which control each metric's computation, logging and visualization process.
Here are the base classes for metric callbacks, which inherit from PyTorch Lightning Callback
:
MetricCallback
: the base class for all metric callbacks.
Please note that this is an API documentation. Please refer to the main documentation pages for more information about how to configure and implement metric callbacks:
1r""" 2 3# Metrics 4 5This submodule provides the **metric callbacks** in CLArena, which control each metric's computation, logging and visualization process. 6 7Here are the base classes for metric callbacks, which inherit from PyTorch Lightning `Callback`: 8 9- `MetricCallback`: the base class for all metric callbacks. 10 11Please note that this is an API documentation. Please refer to the main documentation pages for more information about how to configure and implement metric callbacks: 12 13- [**Configure Metrics**](https://pengxiang-wang.com/projects/continual-learning-arena/docs/components/metrics) 14- [**Implement Custom Callback**](https://pengxiang-wang.com/projects/continual-learning-arena/docs/custom-implementation/callback) 15- [**A Summary of Continual Learning Metrics**](https://pengxiang-wang.com/posts/continual-learning-metrics) 16 17""" 18 19from .base import MetricCallback 20 21from .cl_acc import CLAccuracy 22from .cl_loss import CLLoss 23from .cul_dd import CULDistributionDistance 24from .cul_ad import CULAccuracyDifference 25from .hat_adjustment_rate import HATAdjustmentRate 26from .hat_network_capacity import HATNetworkCapacity 27from .hat_masks import HATMasks 28 29 30from .mtl_acc import MTLAccuracy 31from .mtl_loss import MTLLoss 32 33from .stl_acc import STLAccuracy 34from .stl_loss import STLLoss 35 36__all__ = [ 37 "MetricCallback", 38 "cl_acc", 39 "cl_loss", 40 "cul_dd", 41 "cul_ad", 42 "hat_adjustment_rate", 43 "hat_network_capacity", 44 "hat_masks", 45 "mtl_acc", 46 "mtl_loss", 47 "stl_acc", 48 "stl_loss", 49]
class
MetricCallback(lightning.pytorch.callbacks.callback.Callback):
19class MetricCallback(Callback): 20 r"""The base class for all metrics callbacks in CLArena.""" 21 22 def __init__(self, save_dir: str) -> None: 23 r""" 24 **Args:** 25 - **save_dir** (`str`): The directory where data and figures of metrics will be saved. Better inside the output folder. 26 """ 27 super().__init__() 28 29 os.makedirs(save_dir, exist_ok=True) 30 31 self.save_dir: str = save_dir 32 r"""The directory where data and figures of metrics will be saved."""
The base class for all metrics callbacks in CLArena.
MetricCallback(save_dir: str)
22 def __init__(self, save_dir: str) -> None: 23 r""" 24 **Args:** 25 - **save_dir** (`str`): The directory where data and figures of metrics will be saved. Better inside the output folder. 26 """ 27 super().__init__() 28 29 os.makedirs(save_dir, exist_ok=True) 30 31 self.save_dir: str = save_dir 32 r"""The directory where data and figures of metrics will be saved."""
Args:
- save_dir (
str
): The directory where data and figures of metrics will be saved. Better inside the output folder.