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Task-Incremental Learning
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Incremental learning/continual learning/lifelong learning: A model 
learns a sequence of distinct tasks in an incremental manner

. . . . . . 

Key challenge - Catastrophic forgetting
– A neural network loses what it has learned in previous tasks after 

training on new tasks
– Specifically when learning a new task, the parameters are updated, 

which would not fit to the data distributions of previous tasks



Approaches to Addressing 
Catastrophic Forgetting
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Replay: Complementing the training data of a new task with the 
data representative of the past tasks

Scalability issues - computational efficiency and storage capacity



Approaches to Addressing 
Catastrophic Forgetting
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Parameter regularisation: Adding regularisation/penalty terms 
to the loss to prevent major changes in those parameters 
important for previous tasks when learning new tasks

Issues: network capacity – reduced parameter space available to 
new tasks; manually devise regularisation terms; leans towards 
plasticity of the network



Approaches to Addressing 
Catastrophic Forgetting
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Architecture: learning to dedicate specific parts of the network 
for each task

Network capacity issue – reduced parameter space available to 
new tasks; manually tune hyperparameters; sacrifice the 
plasticity over the stability



Critical to Balance between Memory 
Stability and Learning Plasticity
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Due to network capacity – rather than simply preventing 
catastrophic forgetting, need to balance the trade-off 
between memory stability and learning plasticity



Hard Attention to the Task (HAT)
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An ICML 2018 paper,  state of the art, highly influential (1,000+ 
citations), proposed a hard attention mechanism

Learns a layer-wise hard attention vector, concurrently with learning 
every task; Uses hard attention masks (acts as “inhibitory synapses”) to 
activate or deactivate the output of the units of every layer in the 
forward pass.



Hard Attention to the Task (HAT)
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Conditions learning a new task (the gradients) on the 
attention vectors of the previous tasks in the backward pass

The network capacity rapidly saturated (< 10 tasks), with the 
performance dropping dramatically - leans towards stability



Limitations of HAT
• Network capacity runs out 

after a number of tasks (< 10), 
hence no active parameters for 
new tasks – not suitable for 
long sequences

• Sacrifice plasticity for stability 
• Not adaptive to task 

sequences- manually tune 
hyperparameters to allocate 
network capacity, but in CL 
typically no prior knowledge on 
the number of tasks in a 
sequence
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More active parameters become static as more tasks come in



HAT versus AdaHAT
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Task 3

Adaptive updates to static parameters, taking into account 
their importance and the network capacity, to reuse them



AdaHAT Achieves Best Performance over 
Sequences of 20 Tasks
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AdaHAT outperforms all baselines in terms of average accuracy 
(AA) and forgetting ratio (RF)



AdaHAT Achieves the Consistent Performance 
over Longer Sequences of 50 Tasks
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Conclusion
HAT
• Tends to tilt the stability-plasticity trade-off towards stability 
• Suffers from the insufficient network capacity problem in long 

sequence of tasks
AdaHAT
• Balances the trade-off in an adaptive manner
• Suits for long sequences of tasks
• Achieves better performance than the baselines, in particular HAT 
Future work
• Explore and exploit more subtle information about previous tasks

Contact wangpengxiang@stu.pku.edu.cn for further technical 
discussions
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Hard Conditioning Gradients in HAT

• Condition gradients on previous tasks by hard- 
clipping the gradients with the hard 
adjustment rate

 𝑔′!,#$ = 𝑎!,#$ % 𝑔!,#$
𝑎!,#$ = 1 −min 𝑚!,#

%&, 𝑚!'(,$
%& ∈ {0,1}

Cumulative Attention Vector
𝑚!
)& = max 𝑚!

&, 𝑚!
&'( ∈ {0,1}
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Soft Conditioning Gradients in AdaHAT

• Condition gradients on previous tasks by soft- 
clipping the gradients with the adaptive 
adjustment rate

 𝑔′!,#$ = 𝑎!,#$⋆ % 𝑔!,#$
𝑎!,#$⋆ = 1 −min 𝑚!,#

%&,+,-, 𝑚!'(,$
%&,+,- ∈ [0,1]

Summative Attention Vector
𝑚!
)&,+,- = max 𝑚!

&,+,-, 𝑚!
&'(,+,- ∈ [0,1]
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