Architecture-Based Approaches in Continual Learning

Pengxiang Wang

Peking University, School of Mathematical Sciences

University of Bristol, School of Engineering Mathematics and Technology

T, » pe
ON 9'; 7 . ¥ Bl University of
Y Nt 9B BRISTOL

1/24

Introduction

2/24

Problem Definition

Continual Learning (CL): learning a sequence of tasks t = 1,---, IV in order, with
datasets D' = {z*,y'}

Task-Incremental Learning (TIL): continual learning scenario, aim to train a model
that performs well on all learned tasks

N
m?x Z metric(f(x?), y!), {z*,y'} € D*
=1

Key assumptions when training and testing task t:

P No access to the whole data from previous tasks 1,---,¢t — 1

P> Testing on all seen tasks 1,---,¢
P For TIL testing, task ID t of each test sample is known by the model. Otherwise,

it is task-agnostic testing

3/24

Existing Approaches for TIL

Replay-based Approaches

P> Prevent forgetting by storing parts of the data from previous tasks
P Replay algorithms use them to consolidate previous knowledge
P E.g iCaRL, GEM, DER, DGR ...

Regularization-based Approaches

P Add regularization terms constructed using information about previous tasks to
the loss function when training new tasks
» E.g. LwF, EWC, SI, IMM, VCL, ...

Architecture-based Approaches (what we are talking about)

P Dedicate network parameters in different parts of the network to different tasks
P> Keep the parameters for previous tasks from being significantly changed
P E.g. Progressive Networks, PackNet, DEN, Piggyback, HAT, CPG, UCL, ...

4/24

Existing Approaches for TIL

Optimization-based Approaches

P> Explicitly design and manipulate the optimization step
P> For example, project the gradient not to interfere previous tasks
» E.g. GEM, A-GEM, OWM, OGD, GPM, RGO, TAG, ...

Representation-based Approaches

P> Use special architecture or training procedure to create powerful representations

P Inspired from self-supervised learning, large-scale pre-training like LLMs

P E.g. Co2L, DualNet, prompt-based approaches (L2P, CODAPrompt, ...), CPT
(continual pre-training)...

5/24

Architecture-based Approaches

6/24

Architecture-based Approaches

Leverages the separability characteristic of the neural network architecture
Treat the network as decomposable resources for tasks, rather than as a whole
Dedicate different parts of a neural network to different tasks to minimize the
inter-task interference

Focus on reducing representational overlap between tasks

vV VVvVY

The “part” of a network can be regarded in various ways:

Modular Networks: play around network modules like layers, blocks
Parameter Allocation: allocate group of parameters or neurons to task as a
subnet

P Model Decomposition: decompose network from various aspects into shared
and task-specific components

\ A 4

7/24

Modular Networks: Progessive Networks

Progressive Networks, 2016
P Expand the network with new column module
for each new task
P Linearly increasing model memory
P Similar to independent training: train a
independent network for each task

outputy outputs outputs

8/24

Modular Networks: Progessive Networks

Expert Gate, 2017
P A new independent expert (network)
for each new task
P Similar to independent training but
work in task-agnostic testing
P A gate works as the task ID selector at

test time
P The gate is a network learned through

the task sequence

T TeEgeul

9/24

Modular Networks: PathNet
PathNet, 2017

P> Prepare a large pool of modules for the algorithm to select from
P> Several options in each module position, concatenated and form a subnet for a

task

P> Choose the path by tournament genetic algorithm between different paths during

the training of a task
Input Layers of Modules

/ -

= Source

Outputs

Game

__—— !x\

- Target
game
-
Conv2D ReduceSum W Linear layer M Active
Modules modules modules modules

10/24

Parameter Allocation: Overview

Parameter Allocation

P> Refines the level of modules to parameters or neurons
P> Selects a collection of parameters or neurons to allocate to each task

P Also forms a subnet for the task

weight masks feature masks

11/24

Parameter Allocation: Overview

Parameter Allocation methods differ in ways:

P Methods to allocate

P Manually set through hyperparameters

P Learned together with the learning process
P Application of masks during training

P Forward pass

P Backward pass

P Parameter update step

P Application of masks during testing
P Most methods fix the selected subnet after

weight masks feature masks

P Weight masks are way greater trained on their belonged task and use it as
than feature masks in scale the only model to predict for that task during
P Should keep a decent amount testing

of neurons in each layer

12/24

Parameter Allocation: PackNet
PackNet, 2018

P> Select non-overlapping weight masks and allocate them to tasks

P> Fix masked parameters once trained until testing using the subnet

P> Post-hoc selection by pruning (by absolute values of weights) after training
P> Retraining after pruning as network structure changes

P Manually allocation by percentage hyperparameters

)@, o0 Q0000 O
o O 00O |0 O000| 0

O o O e |0O000 | O
O O|e0 O 00 0| 00O
o O 000 0000|0000

(a) Initial filter for Task I (b) Final filter for Task | (c) Initial filter for Task Il d) Final filter for Task Il (e) Initial filter for Task Ill

N—” N—”

60% pruning + re-training training 33% pruning + re-training training

13/24

Parameter Allocation: DEN
DEN (Dynamically Expandable Networks), 2018

P Find the important neurons as feature masks for testing, and duplicate

P Find by training with equally L2 regularisation, whose connected parameters
change a lot are important

P Dynamic network expansion when performance can't be improved, prune after

P> The training selects their own important neurons by L1 regularised training, then
only train them by L2 regularisation

P Manually allocation by threshold hyperparameters, slightly better than percentage

14 /24

Parameter Allocation: Piggyback
Piggyback, 2018

P> Learnable allocation: binary masks are gated from real values which is
differentiable and can be learned together with parameters

P> Still binary during test

P> Sacrifices with the network parameters fixed, reduced representation ability

O0000 o0 00000
00000 © O Thresholding Function 00000
88888 o oo EmISSRS
00000 @ @ | { L 00060
Dense filter (W) of pre- Binary mask (m) Real-valued mask
trained backbone network or wfe;?hts (m")
© Elementwise Masking
(e]@)
o O
O (@)
O O
© O Eval Time Train Time
Effective filter for Behavior Behavior

SupSup, 2020
P> Extends to task-agnostic
testing

15/24

Parameter Allocation: HAT

HAT (Hard Attention to the Task), 2018

P> Masks and parameters are both learnable

P Fix masked parameters once trained until testing using the subnet

P> Sparsity regularization for masks

Task 1 Task 2 Task 3 Task 4
Full Network High Network @ Medium Network @ Low Network @
Capacity Capacity Capacity Capacity
00000)
28338 §5358) ., (#8488
00000) X h 5
00000 oJoJoJoJe)
O =
(e]=]e)
QOO
adjustment
rate

LVH

LVH®PYV

AdaHAT, 2024 (my work)

P Allow minor adaptive

adjustment to masked
parameters

16/24

Parameter Allocation: CPG

CPG (Compacting, Picking and Growing), 2019

P Post-hoc pruning and retraining + network expanding + learnable masks (on
previous weights)

Gradualy (@O ® ® O Pixilltlléieahrged O 0O 00 Expand if
Prune& ([@@®@ O @ g 000 O| |@e@® ®| Needed
Retrain | OO0 @ O |[——) o |o °

@ 000 O ®| Fillthe (0]e) (@) (X J (J
Q7 \coe 00 Remaining o d
Task1® Task1 o Weights Learnable Task2 @ Gradually
Pruned Weights Mask Prune &
Retrain
Gradually
Prune &
Retrain
TaskK e o e Task K e Task2 ®

17/24

Parameter Allocation: UCL

UCL (Uncertainty-based Continual Learning),

:important node : information loss 2019

“unimportantnode : negative transfer P Identify the important neurons by uncertainty
measure derived from Bayesian learning theory

. L u® m n P Apply different regularisation to the weights by
+® oD oD neuron importance
L P> the important neurons only work in training
I-1 J P The identification of important neurons is soft
of-0 D o0 f:ontrolled by .coe.fficient hyperparameters (;,;)
in the regularisation terms
-2 P> More like a regularisation-based but

incorporate architecture-based ideas

18/24

Model Decomposition: ACL

ACL (Adversarial Continual Learning), 2020

P> Shared and task-specific, modules, features
P> Shared module is adversarially trained with the discriminator to generate
task-invariant features. The discriminator predicts task labels

19/24

Model Decomposition: APD

APD (Additive Parameter Decomposition), 2020

P Decomposes the parameter matrix of a layer mathematically:

0, =00 M, + 1, M, = Sigmoid(v,)
P Apply different regularisation strategies to shared o and task-specific 7;, v,

2
min £ ({0 ® M, +7,};D,) + Ay [y + A [l — oY)

O,T¢,Vy 2

1. Shared parameters ¢ not deviate far from the previous
2. The capacity of task-specific 7, to be as small as possible, by making it sparse

20/24

Model Decomposition: PGMA
PGMA (Parameter Generation and Model Adaptation), 2019

P> Task-specific parameters p, are generated by DPG (dynamic parameter generator)
P> Shared parameters 6, (in solver S) adapt itself to task ¢ with the generated
task-specific p,

— Data Generator

— Encoder
(x| ——— | DG,(x,6,) 7 — f(Z,’H)
NS

Used as
Randomly constraint Inputs

sampled Decoder | see Formula 8 P
sample sample , // \
——zm ’ { DG (2", 6) ﬂ» x' —| SolverS§ |« i)

’,

21/24

Challenges

22/24

Challenge: Network Capacity and Plasticity

Network Capacity Problem

P Any fixed model will eventually get full and lead to the performance drop, given
the potentially infinite task sequence

P Become explicit in architecture-based approaches

P Can be solved by taking shortcuts to expand the networks, but it is not fair

Stability-Plasticity Trade-Off

P Continual learning seeks to trade off the balance between stability and plasticity

P> Approaches that fix part of model for previous tasks are lack of plasticity by
stressing too much stability

P> Others whichever has task shared components still face the classic catastrophic
forgetting problem, which is a result of lack of stability

P They both lead to a bad average performance

23/24

Thank You

Thank you for your attention!

Please feel free to ask any questions.

Check out the post in my blog for complete narratives of this pre!

*’ at ;‘ . >4 Elic University of
PEKINC{INIVERS?T’Y WE] BRISTOL

24 /24

	Introduction
	Architecture-based Approaches
	Challenges

