
Architecture-Based Approaches in Continual Learning

Pengxiang Wang

Peking University, School of Mathematical Sciences

University of Bristol, School of Engineering Mathematics and Technology

1 / 24



Introduction

2 / 24



Problem Definition
Continual Learning (CL): learning a sequence of tasks 𝑡 = 1, ⋯ , 𝑁 in order, with
datasets 𝐷𝑡 = {𝑥𝑡, 𝑦𝑡}
Task-Incremental Learning (TIL): continual learning scenario, aim to train a model �
that performs well on all learned tasks

max
𝑓

 
𝑁

∑
𝑡=1

metric(𝑓(𝑥𝑡), 𝑦𝑡), {𝑥𝑡, 𝑦𝑡} ∈ 𝐷𝑡

Key assumptions when training and testing task 𝑡:
▶ No access to the whole data from previous tasks 1,⋯ , 𝑡 − 1
▶ Testing on all seen tasks 1,⋯ , 𝑡
▶ For TIL testing, task ID 𝑡 of each test sample is known by the model. Otherwise,

it is task-agnostic testing

3 / 24



Existing Approaches for TIL
Replay-based Approaches
▶ Prevent forgetting by storing parts of the data from previous tasks
▶ Replay algorithms use them to consolidate previous knowledge
▶ E.g. iCaRL, GEM, DER, DGR ...

Regularization-based Approaches
▶ Add regularization terms constructed using information about previous tasks to

the loss function when training new tasks
▶ E.g. LwF, EWC, SI, IMM, VCL, ...

Architecture-based Approaches (what we are talking about)
▶ Dedicate network parameters in different parts of the network to different tasks
▶ Keep the parameters for previous tasks from being significantly changed
▶ E.g. Progressive Networks, PackNet, DEN, Piggyback, HAT, CPG, UCL, ...

4 / 24



Existing Approaches for TIL

Optimization-based Approaches
▶ Explicitly design and manipulate the optimization step
▶ For example, project the gradient not to interfere previous tasks
▶ E.g. GEM, A-GEM, OWM, OGD, GPM, RGO, TAG, ...

Representation-based Approaches
▶ Use special architecture or training procedure to create powerful representations
▶ Inspired from self-supervised learning, large-scale pre-training like LLMs
▶ E.g. Co2L, DualNet, prompt-based approaches (L2P, CODAPrompt, ...), CPT

(continual pre-training)...

5 / 24



Architecture-based Approaches

6 / 24



Architecture-based Approaches

▶ Leverages the separability characteristic of the neural network architecture
▶ Treat the network as decomposable resources for tasks, rather than as a whole
▶ Dedicate different parts of a neural network to different tasks to minimize the

inter-task interference
▶ Focus on reducing representational overlap between tasks

The “part” of a network can be regarded in various ways:
▶ Modular Networks: play around network modules like layers, blocks
▶ Parameter Allocation: allocate group of parameters or neurons to task as a

subnet
▶ Model Decomposition: decompose network from various aspects into shared

and task-specific components

7 / 24



Modular Networks: Progessive Networks

Progressive Networks, 2016
▶ Expand the network with new column module

for each new task
▶ Linearly increasing model memory
▶ Similar to independent training: train a

independent network for each task

8 / 24



Modular Networks: Progessive Networks

Expert Gate, 2017
▶ A new independent expert (network)

for each new task
▶ Similar to independent training but

work in task-agnostic testing
▶ A gate works as the task ID selector at

test time
▶ The gate is a network learned through

the task sequence

9 / 24



Modular Networks: PathNet
PathNet, 2017
▶ Prepare a large pool of modules for the algorithm to select from
▶ Several options in each module position, concatenated and form a subnet for a

task
▶ Choose the path by tournament genetic algorithm between different paths during

the training of a task

10 / 24



Parameter Allocation: Overview

Parameter Allocation
▶ Refines the level of modules to parameters or neurons
▶ Selects a collection of parameters or neurons to allocate to each task
▶ Also forms a subnet for the task

11 / 24



Parameter Allocation: Overview

▶ Weight masks are way greater
than feature masks in scale

▶ Should keep a decent amount
of neurons in each layer

Parameter Allocation methods differ in ways:
▶ Methods to allocate

▶ Manually set through hyperparameters
▶ Learned together with the learning process

▶ Application of masks during training
▶ Forward pass
▶ Backward pass
▶ Parameter update step

▶ Application of masks during testing
▶ Most methods fix the selected subnet after

trained on their belonged task and use it as
the only model to predict for that task during
testing

12 / 24



Parameter Allocation: PackNet
PackNet, 2018
▶ Select non-overlapping weight masks and allocate them to tasks
▶ Fix masked parameters once trained until testing using the subnet
▶ Post-hoc selection by pruning (by absolute values of weights) after training
▶ Retraining after pruning as network structure changes
▶ Manually allocation by percentage hyperparameters

13 / 24



Parameter Allocation: DEN
DEN (Dynamically Expandable Networks), 2018
▶ Find the important neurons as feature masks for testing, and duplicate
▶ Find by training with equally L2 regularisation, whose connected parameters

change a lot are important
▶ Dynamic network expansion when performance can’t be improved, prune after
▶ The training selects their own important neurons by L1 regularised training, then

only train them by L2 regularisation
▶ Manually allocation by threshold hyperparameters, slightly better than percentage

14 / 24



Parameter Allocation: Piggyback
Piggyback, 2018
▶ Learnable allocation: binary masks are gated from real values which is

differentiable and can be learned together with parameters
▶ Still binary during test
▶ Sacrifices with the network parameters fixed, reduced representation ability

SupSup, 2020
▶ Extends to task-agnostic

testing

15 / 24



Parameter Allocation: HAT
HAT (Hard Attention to the Task), 2018
▶ Masks and parameters are both learnable
▶ Fix masked parameters once trained until testing using the subnet
▶ Sparsity regularization for masks

H
AT

A
daH

AT

M1 M2 M3

Task 1

Full Network 
Capacity

 

Low Network 
Capacity 

adjustment
rate

1
0

High Network 
Capacity

 

Task 2 Task 3

Medium Network 
Capacity

 

Task 4 AdaHAT, 2024 (my work)
▶ Allow minor adaptive

adjustment to masked
parameters

16 / 24



Parameter Allocation: CPG
CPG (Compacting, Picking and Growing), 2019
▶ Post-hoc pruning and retraining + network expanding + learnable masks (on

previous weights)

17 / 24



Parameter Allocation: UCL

UCL (Uncertainty-based Continual Learning),
2019
▶ Identify the important neurons by uncertainty

measure derived from Bayesian learning theory
▶ Apply different regularisation to the weights by

neuron importance
▶ the important neurons only work in training
▶ The identification of important neurons is soft

controlled by coefficient hyperparameters (𝜎init)
in the regularisation terms

▶ More like a regularisation-based but
incorporate architecture-based ideas

18 / 24



Model Decomposition: ACL

ACL (Adversarial Continual Learning), 2020
▶ Shared and task-specific, modules, features
▶ Shared module is adversarially trained with the discriminator to generate

task-invariant features. The discriminator predicts task labels

19 / 24



Model Decomposition: APD

APD (Additive Parameter Decomposition), 2020
▶ Decomposes the parameter matrix of a layer mathematically:

𝜃𝑡 = 𝜎 ⊙ ℳ𝑡 + 𝜏𝑡,ℳ𝑡 = Sigmoid(v𝑡)

▶ Apply different regularisation strategies to shared 𝜎 and task-specific 𝜏𝑡, v𝑡

min
𝜎,𝜏𝑡,v𝑡

ℒ({𝜎 ⊗ ℳ𝑡 + 𝜏 𝑡} ; 𝒟𝑡) + 𝜆1 ‖𝜏 𝑡‖1 + 𝜆2 ∥𝜎 − 𝜎(𝑡−1)∥22

1. Shared parameters 𝜎 not deviate far from the previous
2. The capacity of task-specific 𝜏𝑡 to be as small as possible, by making it sparse

20 / 24



Model Decomposition: PGMA
PGMA (Parameter Generation and Model Adaptation), 2019
▶ Task-specific parameters 𝑝𝑡 are generated by DPG (dynamic parameter generator)
▶ Shared parameters 𝜃0 (in solver 𝑆) adapt itself to task 𝑡 with the generated

task-specific 𝑝𝑡

21 / 24



Challenges

22 / 24



Challenge: Network Capacity and Plasticity

Network Capacity Problem
▶ Any fixed model will eventually get full and lead to the performance drop, given

the potentially infinite task sequence
▶ Become explicit in architecture-based approaches
▶ Can be solved by taking shortcuts to expand the networks, but it is not fair

Stability-Plasticity Trade-Off
▶ Continual learning seeks to trade off the balance between stability and plasticity
▶ Approaches that fix part of model for previous tasks are lack of plasticity by

stressing too much stability
▶ Others whichever has task shared components still face the classic catastrophic

forgetting problem, which is a result of lack of stability
▶ They both lead to a bad average performance

23 / 24



Thank You

Thank you for your attention!

Please feel free to ask any questions.

Check out the post in my blog for complete narratives of this pre!

24 / 24


	Introduction
	Architecture-based Approaches
	Challenges

