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Introduction
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Problem Definition

Continual Learning (CL): learning a sequence of tasks t = 1,---, IV in order, with
datasets D' = {z*,y'}

Task-Incremental Learning (TIL): continual learning scenario, aim to train a model
that performs well on all learned tasks

N
m?x Z metric(f(x?), y!), {z*,y'} € D*
=1

Key assumptions when training and testing task t:

P No access to the whole data from previous tasks 1,---,¢t — 1

P> Testing on all seen tasks 1,---,¢
P For TIL testing, task ID t of each test sample is known by the model. Otherwise,

it is task-agnostic testing
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Existing Approaches for TIL

Replay-based Approaches

P> Prevent forgetting by storing parts of the data from previous tasks
P Replay algorithms use them to consolidate previous knowledge
P E.g iCaRL, GEM, DER, DGR ...

Regularization-based Approaches

P Add regularization terms constructed using information about previous tasks to
the loss function when training new tasks
» E.g. LwF, EWC, SI, IMM, VCL, ...

Architecture-based Approaches (what we are talking about)

P Dedicate network parameters in different parts of the network to different tasks
P> Keep the parameters for previous tasks from being significantly changed
P E.g. Progressive Networks, PackNet, DEN, Piggyback, HAT, CPG, UCL, ...
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Existing Approaches for TIL

Optimization-based Approaches

P> Explicitly design and manipulate the optimization step
P> For example, project the gradient not to interfere previous tasks
» E.g. GEM, A-GEM, OWM, OGD, GPM, RGO, TAG, ...

Representation-based Approaches

P> Use special architecture or training procedure to create powerful representations

P Inspired from self-supervised learning, large-scale pre-training like LLMs

P E.g. Co2L, DualNet, prompt-based approaches (L2P, CODAPrompt, ...), CPT
(continual pre-training)...
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Architecture-based Approaches
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Architecture-based Approaches

Leverages the separability characteristic of the neural network architecture
Treat the network as decomposable resources for tasks, rather than as a whole
Dedicate different parts of a neural network to different tasks to minimize the
inter-task interference

Focus on reducing representational overlap between tasks
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The “part” of a network can be regarded in various ways:

Modular Networks: play around network modules like layers, blocks
Parameter Allocation: allocate group of parameters or neurons to task as a
subnet

P Model Decomposition: decompose network from various aspects into shared
and task-specific components
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Modular Networks: Progessive Networks

Progressive Networks, 2016
P Expand the network with new column module
for each new task
P Linearly increasing model memory
P Similar to independent training: train a
independent network for each task

outputy outputs outputs
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Modular Networks: Progessive Networks

Expert Gate, 2017
P A new independent expert (network)
for each new task
P Similar to independent training but
work in task-agnostic testing
P A gate works as the task ID selector at

test time
P The gate is a network learned through

the task sequence
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Modular Networks: PathNet
PathNet, 2017

P> Prepare a large pool of modules for the algorithm to select from
P> Several options in each module position, concatenated and form a subnet for a

task

P> Choose the path by tournament genetic algorithm between different paths during

the training of a task
Input Layers of Modules
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Parameter Allocation: Overview

Parameter Allocation

P> Refines the level of modules to parameters or neurons
P> Selects a collection of parameters or neurons to allocate to each task

P Also forms a subnet for the task

weight masks feature masks
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Parameter Allocation: Overview

Parameter Allocation methods differ in ways:

P Methods to allocate

P Manually set through hyperparameters

P Learned together with the learning process
P Application of masks during training

P Forward pass

P Backward pass

P Parameter update step

P Application of masks during testing
P Most methods fix the selected subnet after

weight masks feature masks

P Weight masks are way greater trained on their belonged task and use it as
than feature masks in scale the only model to predict for that task during
P Should keep a decent amount testing

of neurons in each layer
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Parameter Allocation: PackNet
PackNet, 2018

P> Select non-overlapping weight masks and allocate them to tasks

P> Fix masked parameters once trained until testing using the subnet

P> Post-hoc selection by pruning (by absolute values of weights) after training
P> Retraining after pruning as network structure changes

P Manually allocation by percentage hyperparameters
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60% pruning + re-training training 33% pruning + re-training training
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Parameter Allocation: DEN
DEN (Dynamically Expandable Networks), 2018

P Find the important neurons as feature masks for testing, and duplicate

P Find by training with equally L2 regularisation, whose connected parameters
change a lot are important

P Dynamic network expansion when performance can't be improved, prune after

P> The training selects their own important neurons by L1 regularised training, then
only train them by L2 regularisation

P Manually allocation by threshold hyperparameters, slightly better than percentage
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Parameter Allocation: Piggyback
Piggyback, 2018

P> Learnable allocation: binary masks are gated from real values which is
differentiable and can be learned together with parameters

P> Still binary during test

P> Sacrifices with the network parameters fixed, reduced representation ability
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SupSup, 2020
P> Extends to task-agnostic
testing
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Parameter Allocation: HAT

HAT (Hard Attention to the Task), 2018

P> Masks and parameters are both learnable

P Fix masked parameters once trained until testing using the subnet

P> Sparsity regularization for masks
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AdaHAT, 2024 (my work)

P Allow minor adaptive

adjustment to masked
parameters
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Parameter Allocation: CPG

CPG (Compacting, Picking and Growing), 2019

P Post-hoc pruning and retraining + network expanding + learnable masks (on
previous weights)
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Parameter Allocation: UCL

UCL (Uncertainty-based Continual Learning),

:important node : information loss 2019

“unimportantnode  : negative transfer P Identify the important neurons by uncertainty
measure derived from Bayesian learning theory

. L u® m n P Apply different regularisation to the weights by
+® oD oD neuron importance
L P> the important neurons only work in training
I-1 J P The identification of important neurons is soft
of-0 D o0 f:ontrolled by .coe.fficient hyperparameters (;,;)
in the regularisation terms
-2 P> More like a regularisation-based but

incorporate architecture-based ideas
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Model Decomposition: ACL

ACL (Adversarial Continual Learning), 2020

P> Shared and task-specific, modules, features
P> Shared module is adversarially trained with the discriminator to generate
task-invariant features. The discriminator predicts task labels
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Model Decomposition: APD

APD (Additive Parameter Decomposition), 2020

P Decomposes the parameter matrix of a layer mathematically:

0, =00 M, + 1, M, = Sigmoid(v,)
P Apply different regularisation strategies to shared o and task-specific 7;, v,

2
min £ ({0 ® M, +7,};D,) + Ay [y + A [l — oY)

O,T¢,Vy 2

1. Shared parameters ¢ not deviate far from the previous
2. The capacity of task-specific 7, to be as small as possible, by making it sparse
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Model Decomposition: PGMA
PGMA (Parameter Generation and Model Adaptation), 2019

P> Task-specific parameters p, are generated by DPG (dynamic parameter generator)
P> Shared parameters 6, (in solver S) adapt itself to task ¢ with the generated
task-specific p,

— Data Generator

— Encoder
(x| ——— | DG,(x,6,) 7 — f(Z,’H)
NS

Used as
Randomly constraint Inputs

sampled Decoder | see Formula 8 P
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Challenges
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Challenge: Network Capacity and Plasticity

Network Capacity Problem

P Any fixed model will eventually get full and lead to the performance drop, given
the potentially infinite task sequence

P Become explicit in architecture-based approaches

P Can be solved by taking shortcuts to expand the networks, but it is not fair

Stability-Plasticity Trade-Off

P Continual learning seeks to trade off the balance between stability and plasticity

P> Approaches that fix part of model for previous tasks are lack of plasticity by
stressing too much stability

P> Others whichever has task shared components still face the classic catastrophic
forgetting problem, which is a result of lack of stability

P They both lead to a bad average performance
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Thank You

Thank you for your attention!

Please feel free to ask any questions.

Check out the post in my blog for complete narratives of this pre!
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