
AdaHAT: Adaptive Hard Attention to the Task in
Task-Incremental Learning

Pengxiang Wang1 Hongbo Bo2,3 Jun Hong4 Weiru Liu3 Kedian Mu1

1 Peking University, School of Mathematical Sciences, Beijing, China
2 Newcastle University, Population Health Sciences Institute, Newcastle, UK

3 University of Bristol, School of Engineering Mathematics and Technology, Bristol, UK
4 University of the West of England, School of Computing and Creative Technologies, Bristol, UK

1 / 28



Introduction

2 / 28



Continual Learning

Continual Learning
▶ A machine learning paradigm
▶ Learn continual tasks and adapt over time
▶ One of the key features of human intelligence

Catastrophic Forgetting
▶ Drastic performance drops on previous tasks after learning new tasks
▶ A major issue for continual learning algorithm to address

3 / 28



Problem Definition

Continual Learning (CL): learning a sequence of tasks 𝑡 = 1, ⋯ , 𝑁 in order, with
datasets 𝐷𝑡 = {𝑥𝑡, 𝑦𝑡}

Task-Incremental Learning (TIL): continual learning scenario, aim to train a model �
that performs well on all learned tasks

max
𝑓

 
𝑁

∑
𝑡=1

metric(𝑓(𝑥𝑡), 𝑦𝑡), {𝑥𝑡, 𝑦𝑡} ∈ 𝐷𝑡

Key assumptions when training and testing task 𝑡:
▶ No access to the whole data from previous tasks 1,⋯ , 𝑡 − 1
▶ Testing on all seen tasks 1,⋯ , 𝑡
▶ For TIL testing, task ID 𝑡 of each test sample is known by the model

4 / 28



Existing Approaches for TIL
Replay-based Approaches
▶ Prevent forgetting by storing parts of the data from previous tasks
▶ Replay algorithms use them to consolidate previous knowledge
▶ E.g. iCaRL, GEM, DER, ...

Regularization-based Approaches
▶ Add regularization terms constructed using information about previous tasks to

the loss function when training new tasks
▶ E.g. LwF, EWC, SI, IMM, VCL, ...

Architecture-based Approaches
▶ Dedicate network parameters in different parts of the network to different tasks

(inherent nature of parameter separability)
▶ Keep the parameters learned in previous tasks from being significantly changed
▶ Focus on reducing representational overlap between tasks
▶ E.g. Progressive Networks, PackNet, UCL, Piggyback, HAT, CPG, SupSup, ...

5 / 28



Stability-Plasticity Dilemma
Continual learning is a trade-off between stability and plasticity.
▶ Stability: preserve knowledge for previous tasks
▶ Plasticity: reserve representational space for new tasks

We must trade them off to get higher performance averaged on all tasks.

For replay, regularization approaches:
▶ Emphasis on stability in their forgetting

prevention mechanisms
▶ But generally still lean towards plasticity

For architecture approaches:
▶ Distinctly different strategies that overly

prioritize stability
▶ Tilting the trade-off towards stability instead

6 / 28



Related Work

7 / 28



HAT: Hard Attention to the Task

HAT (Hard Attention to the Task) is one of
the most representative architecture-based
approaches. Our work AdaHAT provides an
extension to HAT.

Key features:
▶ Hard (binary) attention vectors (masks) on

layers, dedicating the part of each task
▶ Treat the masks as model parameters,

which means masks are learned
▶ Masks condition on gradients directly.

Masked parameters won’t be updated

8 / 28



Mechanism Details of HAT
Layer-wise attention vectors (masks) are learned to pay hard (binary) attention on
units in each layer 𝑙 = 1, ⋯ , 𝐿 − 1 to a new task 𝑡:

m≤𝑡
𝑙 = max (m𝑡

𝑙 , m≤𝑡−1
𝑙 )

Binary values are gated from real-value task embeddings which is learnable:

m𝑡
𝑙 = 𝜎 (𝑠e𝑡

𝑙)

Masks hard-clip gradients of parameters:

𝑔′
𝑙,𝑖𝑗 = 𝑎𝑙,𝑖𝑗 ⋅ 𝑔𝑙,𝑖𝑗, 𝑎𝑙,𝑖𝑗 ∈ {0, 1}

𝑎𝑙,𝑖𝑗 = 1 − min (𝑚<𝑡
𝑙,𝑖 ,𝑚<𝑡

𝑙−1,𝑗)

9 / 28



Problem 1: Insufficient Network Capacity

Architecture-based approaches all suffer from
network capacity problem especially in long
sequence of tasks, sacrificing plasticity for stability.
HAT’s hard-clipping mechanism allows no update
for parameters masked by previous tasks.

More tasks come in
↓

More active parameters become static
↓

Less sufficient network capacity
↓

Learning plasticity reduced, significantly affecting
performance on new tasks

!!"#
$%

1
2

3

$%&'

4
5

6

7

8

9
10
11

12
13

10 / 28



Problem 1: Insufficient Network Capacity

HAT tries to solve it by sparsity regularization on
learnable masks:

ℒ′ = ℒ(𝑓(𝑥𝑡), 𝑦𝑡) + 𝑐𝑅 (M𝑡, M<𝑡)

𝑅 (M𝑡, M<𝑡) =
∑𝐿−1

𝑙=1 ∑𝑁𝑙
𝑖=1 𝑚𝑡

𝑙,𝑖 (1 − 𝑚<𝑡
𝑙,𝑖)

∑𝐿−1
𝑙=1 ∑𝑁𝑙

𝑖=1 (1 − 𝑚<𝑡
𝑙,𝑖)

▶ Meant to promote low network capacity usage
and high compactness of the masks

▶ Helps alleviate the issue on network capacity to
a certain extent

▶ However, the network capacity will eventually
run out

!!"#
$%

1
2

3

$%&'

4
5

6

7

8

9
10
11

12
13

11 / 28



Problem 2: Non-adaptive Hyperparameters

Most architecture-based approaches:
▶ Use several hyperparameters to manually allocate network capacity usage
▶ Without leveraging any information about previous tasks
▶ E.g. PackNet use pruning ratios, HAT uses 𝑠max

In continual learning:
▶ We never know how many tasks in future, maybe infinite …
▶ We’re not able to decide the capacity allocation beforehand
▶ Manual hyperparameter tuning is infeasible!

In our work, an adaptive strategy smartly allocates the network capacity with taking
into account the information about previous tasks.

12 / 28



Methodology

13 / 28



AdaHAT: Adaptive Hard Attention to the Task

Our Proposed AdaHAT soft-clips gradients, which allows minor updates for
parameters masked by previous tasks:

𝑔′
𝑙,𝑖𝑗 = 𝑎⋆

𝑙,𝑖𝑗 ⋅ 𝑔𝑙,𝑖𝑗, 𝑎⋆
𝑙,𝑖𝑗 ∈ [0, 1]

The adjustment rate 𝑎⋆
𝑙,𝑖𝑗 now is an adaptive controller, guided by two pieces of

information about previous tasks directly from HAT architecture:
▶ Parameter Importance
▶ Network Sparsity

14 / 28



AdaHAT: Parameter Importance
The attention vectors (masks) indicate the importance of parameter.
Cumulative Attention Vectors (HAT)

m≤𝑡
𝑙 = max (m𝑡

𝑙 , m≤𝑡−1
𝑙 )

▶ Binary {0, 1}, represents if it’s masked by previous tasks

Summative Attention Vectors (AdaHAT)

m≤𝑡,sum
𝑙 = m𝑡

𝑙 + m≤𝑡−1,sum
𝑙

▶ Range from 0 to 𝑡 − 1, represents how many previous tasks it’s masked
▶ Encapsulates more information about previous tasks

Adaptive process: Higher summative vectors → More important to previous tasks
→ Smaller adjustment rate 𝑎⋆

𝑙,𝑖𝑗 → Smaller updates for the parameter

15 / 28



AdaHAT: Network Sparsity
The sparsity regularization term 𝑅 (M𝑡, M<𝑡) measures the compactness of masks.

It is closely related to the current network capacity:

Generally, when a smaller proportion of parameters in the network are static
(i.e., sufficient network capacity), the regularization value tends to be larger, as
there is a great possibility for the hard attention to be paid to active parameters.

Adaptive process: Higher sparsity regularization → (Suggesting) more unmasked
space available for new tasks → Less need to adjust the static space for previous tasks,
should go for active parameters → Smaller adjustment rate 𝑎⋆

𝑙,𝑖𝑗 in general

Note: in this way, AdaHAT tries its best to mimic HAT before the network capacity
limit, retaining maximum stability before affecting plasticity for new tasks.

16 / 28



AdaHAT: The Adjustment Rate
Adaptive Adjustment Rate (AdaHAT)

𝑎⋆
𝑙,𝑖𝑗 = 𝑟𝑙

min (𝑚<𝑡,sum
𝑙,𝑖 ,𝑚<𝑡,sum

𝑙−1,𝑗 ) + 𝑟𝑙
, 𝑟𝑙 = 𝛼

𝑅 (M𝑡, M<𝑡) + 𝜖

Adjustment Rate (HAT)

𝑎𝑙,𝑖𝑗 = 1 − min (𝑚<𝑡
𝑙,𝑖 ,𝑚<𝑡

𝑙−1,𝑗)

The adjustment rate in AdaHAT adaptively incorporates both information about
previous tasks:
▶ The higher parameter importance min (𝑚<𝑡,sum

𝑙,𝑖 ,𝑚<𝑡,sum
𝑙−1,𝑗 ), the lower adjustment

rate
▶ The higher network sparsity 𝑅 (M𝑡, M<𝑡), the higher adjustment rate

While in HAT only the accumulation of masks.

17 / 28



AdaHAT: Adaptive Hard Attention to the Task

H
AT

A
daH

AT
M1 M2 M3

Task 1

Full Network 
Capacity

 

Low Network 
Capacity 

adjustment
rate

1
0

High Network 
Capacity

 

Task 2 Task 3

Medium Network 
Capacity

 

Task 4

18 / 28



Experiments

19 / 28



Main Results

20 / 28



Main Results

▶ Datasets: Permuted MNIST, Split
CIFAR-100, 20 tasks

▶ Main metrics:
▶ Average Accuracy (AA) over all tasks
▶ Forgetting Rate (FR)

▶ Metrics for stability-plasticity
trade-off:

▶ Backward Transfer (BMT) for
stability

▶ Forward Transfer (FWT) for
plasticity

Results:
▶ AdaHAT outperforms all baselines
▶ AdaHAT balances stability-plasticity

better, while
▶ HAT: high BWT, low FWT
▶ Finetuning: low BWT, high FWT
▶ HAT-const-1: low BWT, high FWT

Conclusions: it is important to maintain a balanced stability-plasticity trade-off for
optimal performance.

21 / 28



Results on Longer Task Sequences

0 5 10 15 20 25 30 35 40 45 50
N

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

AA
N Finetuning

LwF
EWC
HAT
AdaHAT
HAT-random
HAT-const-alpha
HAT-cons-1
Random

Dataset: Permuted MNIST, 50 tasks
(longer)

Results:
▶ HAT slightly outperforms before task

8 then drastically drops
▶ AdaHAT keeps significant superiority

after the turning point
▶ AdaHAT is still close to HAT before

task 8
Conclusions:
▶ There is a turning point for HAT when it exhausts network capacity
▶ AdaHAT mimics HAT well before the network capacity limit, and shows much

more capability for long task sequence settings

22 / 28



Network Capacity Usage

0 10000 20000 30000 40000
Iteration

10 7

10 6

10 5

10 4

10 3

10 2

10 1

100

NC

HAT
AdaHAT
HAT-random
HAT-const-alpha
HAT-const-1

Network Capacity Measurement

𝑁𝐶 = 1
∑𝑙 𝑁𝑙

∑
𝑙,𝑖,𝑗

𝑎𝑙,𝑖𝑗

0 = all parameters can be updated freely
1 = no parameter can be updated

Results and Conclusions:
▶ HAT runs out of network capacity very soon at a fixed turning point (task 8)
▶ AdaHAT again behaves very similarly to HAT at first
▶ After the turning point, it manages it adaptively over time (through an adaptive

adjustment rate), make it converge to 0 but never reach 0

23 / 28



Ablation Study

0 5 10 15 20 25 30 35 40 45 50
N

0.5

0.6

0.7

0.8

0.9

1.0

AA
N

HAT
AdaHAT
AdaHAT-no-reg
AdaHAT-no-sum

Ablation of two pieces of information:
▶ AdaHAT-no-sum: fix summative

min (𝑚<𝑡,sum
𝑙,𝑖 , 𝑚<𝑡,sum

𝑙−1,𝑗 ) at constant 𝑡
▶ AdaHAT-no-reg: fix regularization

term 𝑅 (M𝑡, M<𝑡) at constant 0

Results: both underperform AdaHAT but
outperform HAT

Conclusions: both information (parameter importance, network sparsity) play crucial
roles for an adaptive extension of HAT.

24 / 28



Hyperparameters

0 5 10 15 20
N

0.6

0.7

0.8

0.9

1.0

AA
N

 = 1e-7
 = 5e-7
 = 9e-7
 = 1e-6
 = 2e-6
 = 5e-6
 = 1e-5

AdaHAT introduces only one additional
hyperparameter:

𝛼 – overall intensity of gradient
adjustment

Results: 𝛼 = 10−6 is optimal.

Conclusions:
▶ Neither small nor large gradient adjustment balances the stability-plasticity

trade-off, thus underperforms
▶ The optimal is still a relatively small value, indicating the importance to design a

proper and well-guided adjustment rate

25 / 28



Conclusions

26 / 28



Conclusions

Existing architecture-based approaches (like HAT):
▶ Tend to tilt the stability-plasticity trade-off towards stability
▶ Suffer from insufficient network capacity problem in long sequence of tasks

Our proposed AdaHAT:
▶ Balances the trade-off in an adaptive adjustment mechanism
▶ Also retains maximum stability benefits before the network capacity limit
▶ Effectively leverages information about previous tasks which was seldom used in

architecture-based approaches
▶ All of them leads to better performance than HAT

Future work:
▶ Explore and exploit more subtle information about previous tasks

27 / 28



Thank You
Thank you for your attention!

Please feel free to ask any questions or reach out to us at:
wangpengxiang@stu.pku.edu.cn

Project page:
https://pengxiang-wang.com/projects/continual-learning-arena

GitHub:
https://github.com/pengxiang-wang/continual-learning-arena

28 / 28

wangpengxiang@stu.pku.edu.cn
https://pengxiang-wang.com/projects/continual-learning-arena
https://github.com/pengxiang-wang/continual-learning-arena

	Introduction
	Related Work
	Methodology
	Experiments
	Conclusions

