AdaHAT: Adaptive Hard Attention to the Task in
Task-Incremental Learning

Pengxiang Wang! Hongbo Bo*® Jun Hong* Weiru Liu® Kedian Mu?

1 Peking University, School of Mathematical Sciences, Beijing, China
2 Newcastle University, Population Health Sciences Institute, Newcastle, UK
3 University of Bristol, School of Engineering Mathematics and Technology, Bristol, UK

4 University of the West of England, School of Computing and Creative Technologies, Bristol, UK

4 Y e {J" .ﬁ wé University of
tr S @ BRISTOL

1/28

Introduction

2/28

Continual Learning

Continual Learning

P A machine learning paradigm
P> Learn continual tasks and adapt over time
P> One of the key features of human intelligence

Catastrophic Forgetting

P Drastic performance drops on previous tasks after learning new tasks
P> A major issue for continual learning algorithm to address

3/28

Problem Definition

Continual Learning (CL): learning a sequence of tasks ¢t = 1,---, N in order, with
datasets D! = {z%, y'}

Task-Incremental Learning (TIL): continual learning scenario, aim to train a model
that performs well on all learned tasks

N
m?X Zmetric(f(mt)7yt>7 {«",y'} € D'
=1

Key assumptions when training and testing task ¢:

P No access to the whole data from previous tasks 1,---,¢ — 1
P> Testing on all seen tasks 1, ,¢
P For TIL testing, task ID t of each test sample is known by the model

4/28

Existing Approaches for TIL

Replay-based Approaches

P> Prevent forgetting by storing parts of the data from previous tasks
P Replay algorithms use them to consolidate previous knowledge
» Eg iCaRL, GEM, DER, ...

Regularization-based Approaches

P> Add regularization terms constructed using information about previous tasks to
the loss function when training new tasks
» E.g. LwF, EWC, SI, IMM, VCL, ...

Architecture-based Approaches

P Dedicate network parameters in different parts of the network to different tasks
(inherent nature of parameter separability)

P> Keep the parameters learned in previous tasks from being significantly changed

P> Focus on reducing representational overlap between tasks

P E.g. Progressive Networks, PackNet, UCL, Piggyback, HAT, CPG, SupSup, ...

5/28

Stability-Plasticity Dilemma

Continual learning is a trade-off between stability and plasticity.

P> Stability: preserve knowledge for previous tasks
P> Plasticity: reserve representational space for new tasks

We must trade them off to get higher performance averaged on all tasks.

For replay, regularization approaches:
P Emphasis on stability in their forgetting
prevention mechanisms
P> But generally still lean towards plasticity

For architecture approaches:
P Distinctly different strategies that overly
prioritize stability
P Tilting the trade-off towards stability instead

6/28

Related Work

7/28

HAT: Hard Attention to the Task

HAT (Hard Attention to the Task) is one of v,
the most representative architecture-based
approaches. Our work AdaHAT provides an
extension to HAT.

Key features:
P Hard (binary) attention vectors (masks) on COmpensaﬁon](f‘”’_”_[o](®
layers, dedicating the part of each task e :
P> Treat the masks as model parameters,
which means masks are learned
P Masks condition on gradients directly.
Masked parameters won't be updated

8/28

Mechanism Details of HAT

Layer-wise attention vectors (masks) are learned to pay hard (binary) attention on
units in each layer [=1,---, L — 1 to a new task ¢:

mft = max (mf, mftfl)

Binary values are gated from real-value task embeddings which is learnable:
t __ t
m| = o (se})
mﬁl,l:[]

Masks hard-clip gradients of parameters: @

/ —_
91,i5 = Qi Guigs Qg € {0,1}

s =0

no update

— : <t <t
ap ;= 1 — min (ml’i , ml—l,j)
miz =0

9/28

Problem 1: Insufficient Network Capacity

Architecture-based approaches all suffer from
network capacity problem especially in long
sequence of tasks, sacrificing plasticity for stability.
HAT's hard-clipping mechanism allows no update
for parameters masked by previous tasks.

More tasks come in

1

More active parameters become static

1
Less sufficient network capacity
1
Learning plasticity reduced, significantly affecting
performance on new tasks

<t
mMgq

%

task

)

10/28

Problem 1: Insufficient Network Capacity

HAT tries to solve it by sparsity regularization on
learnable masks:

£ = L(f(x,)y) + R (M, M)

L—1 <N,
. Z1:1 Zz:l1 mf% (1 B ml<zt)
= I—1 N,

21:1 Zz:ll (1 o mff)

R (hﬂt,hﬂ<t)

P Meant to promote low network capacity usage
and high compactness of the masks

P> Helps alleviate the issue on network capacity to
a certain extent

P However, the network capacity will eventually
run out

<t
Mgeq

il

11/28

Problem 2: Non-adaptive Hyperparameters

Most architecture-based approaches:

P> Use several hyperparameters to manually allocate network capacity usage
P Without leveraging any information about previous tasks
P E.g. PackNet use pruning ratios, HAT uses s, ..

In continual learning:

P We never know how many tasks in future, maybe infinite ..
P We're not able to decide the capacity allocation beforehand
P Manual hyperparameter tuning is infeasible!

In our work, an adaptive strategy smartly allocates the network capacity with taking
into account the information about previous tasks.

12/28

Methodology

13/28

AdaHAT: Adaptive Hard Attention to the Task

Our Proposed AdaHAT soft-clips gradients, which allows minor updates for
parameters masked by previous tasks:

/ — g% *
915 = i;* Gij» a1 45 € [0,1]

The adjustment rate al*ij now is an adaptive controller, guided by two pieces of
information about previous tasks directly from HAT architecture:

P Parameter Importance
P Network Sparsity

14/28

AdaHAT: Parameter Importance

The attention vectors (masks) indicate the importance of parameter.

Cumulative Attention Vectors (HAT)

mlgt = max (mf, mlgtfl)

P Binary {0, 1}, represents if it's masked by previous tasks

Summative Attention Vectors (AdaHAT)

mlgt,sum — mf + mlgtfl,sum

P Range from 0 to t — 1, represents how many previous tasks it's masked
P Encapsulates more information about previous tasks

Adaptive process: Higher summative vectors — More important to previous tasks
— Smaller adjustment rate al*ij — Smaller updates for the parameter

15/28

AdaHAT: Network Sparsity

The sparsity regularization term R (Mt, I\/I<t) measures the compactness of masks.

It is closely related to the current network capacity:

Generally, when a smaller proportion of parameters in the network are static
(i.e., sufficient network capacity), the regularization value tends to be larger, as
there is a great possibility for the hard attention to be paid to active parameters.

Adaptive process: Higher sparsity regularization — (Suggesting) more unmasked
space available for new tasks — Less need to adjust the static space for previous tasks,
should go for active parameters — Smaller adjustment rate aj ,; in general

Note: in this way, AdaHAT tries its best to mimic HAT before the network capacity
limit, retaining maximum stability before affecting plasticity for new tasks.

16/28

AdaHAT: The Adjustment Rate
Adaptive Adjustment Rate (AdaHAT)
* T -

a; .. = T, =
Ly . t t v t t
7 min (m< T ’s”m> + 7 R (I\/I M=) +e€

i My

Adjustment Rate (HAT)

_ : <t . <t
a;; = 1 — min (mlﬂ.,ml_l’j)

The adjustment rate in AdaHAT adaptively incorporates both information about
previous tasks:
P The higher parameter importance min (mif’sum,mf_’f’i;m), the lower adjustment
rate
P The higher network sparsity R (Mt, M<t), the higher adjustment rate
While in HAT only the accumulation of masks.

17/28

AdaHAT: Adaptive Hard Attention to the Task

Task 1

Full Network
Capacity

adjustment
rate

Task 2

High Network
Capacity

Ml

Task 3

Medium Network

Capacity

MZ

Task 4

Low Network
Capacity

LVH

LVH®PY

18/28

Experiments

19/28

Main Results

Table 1. Results on performance and stability-plasticity trade-off metrics (mean +
std) of different approaches on the two datasets (20 tasks).

Dataset |Approach |AA(%) |FR (%) |BWT (%) |[FWT (%)
Finetuning 32,62+ 1.60 |-73.78+1.84 |—68.10+ 1.68 |63.51 +0.03
LwF 26.95+ 1.80 |—80.35£2.08 |—72.59+1.91 |62.04+ 0.09
EWC 52.25+2.46 |—-51.38+£2.83 |—42.04+2.67 |58.12+0.15
Permuted |HAT 67.64+1.27 |-33.70+£1.46 |—0.11+0.18 [32.49+1.12
MNIST |HAT-random |66.43+1.21 |—35.10+1.39 |—-0.27+0.49 |31.40+1.22
HAT-const-alpha|68.08 + 1.18 |—33.20 +1.36 |—1#e~3 +0.00/32.92 + 1.23
HAT-const-1 |48.83+4.35 |—55.14+5.02 |—49.68+4.40 62.26+0.21
AdaHAT 79.90 & 2.40|—19.43 + 2.76|—14.68 + 2.48 |59.96 + 0.09
Finetuning 24.34+0.73 |-91.66+1.32 |—54.00+1.00 |53.10+ 0.55
LwF 34.56+0.94 |—70.91+2.05 |—48.03+1.01 |57.61 + 0.40
, EWC 30.23+ 1.61 |-79.84+£3.13 |—54.05+1.28 |59.20 + 0.50
Split HAT 3244+ 1.58 |—74.71+3.37 |—45.50+1.49 |53.11+0.34
CIFAR- |gAT random 3141+ 1.29 |—76.98+2.45 |—48.80+ 1.33 |52.76 4+ 0.57
100 HAT-const-alpha|32.16 + 2.48 |—75.04+5.16 |—44.49 + 2.57 |51.86 4 0.82
HAT-const-1 |32.40+1.40 |—75.58+3.08 |—48.80+1.72 |56.30 +0.36
AdaHAT 38.74 + 2.24|—62.37 1= 4.64|—42.11 £ 2.02 [56.33 +0.82

20/28

Main Results

P Datasets: Permuted MNIST, Split
CIFAR-100, 20 tasks
P Main metrics:
P> Average Accuracy (AA) over all tasks
P Forgetting Rate (FR)
P> Metrics for stability-plasticity
trade-off:
P Backward Transfer (BMT) for
stability
P Forward Transfer (FWT) for
plasticity

Results:
P AdaHAT outperforms all baselines
P AdaHAT balances stability-plasticity
better, while
P HAT: high BWT, low FWT
P Finetuning: low BWT, high FWT
P HAT-const-1: low BWT, high FWT

Conclusions: it is important to maintain a balanced stability-plasticity trade-off for

optimal performance.

Results on Longer Task Sequences

1.0 Dataset: Permuted MNIST, 50 tasks
0.9 (longer)

0.8 ‘\""----______________________

= Finetuning Resu'tS:

20'5 LwF
2 o.4] — ewe % P HAT slightly outperforms before task

— HAT

0.3{ — Adamar e 8 then drastically drops

= HAT-random

0.2 HAT.const-alpha P AdaHAT keeps significant superiority
s HAT-cONS-1 . -
11 Random after the turning point
%5 T 15 2 3 3 3 @ 5 %0 P AdaHAT is still close to HAT before
task 8

Conclusions:

P There is a turning point for HAT when it exhausts network capacity
P AdaHAT mimics HAT well before the network capacity limit, and shows much
more capability for long task sequence settings

22/28

Network Capacity Usage

10° Network Capacity Measurement
1071
1
102 _ E :
— HAT NC - Z N al,Z]
1073 AdaHAT 170 14,5
g ——— HAT-random "
104 m— HAT-const-alpha
= HAT-const-1
107
0 = all parameters can be updated freely
107
1 = no parameter can be updated
1077
0 10000 20000 30000 40000
Iteration

Results and Conclusions:

P> HAT runs out of network capacity very soon at a fixed turning point (task 8)

P AdaHAT again behaves very similarly to HAT at first

P> After the turning point, it manages it adaptively over time (through an adaptive
adjustment rate), make it converge to 0 but never reach 0

23/28

Ablation Study

1.0 Ablation of two pieces of information:
P AdaHAT-no-sum: fix summative

09 min (mif’sum, mfjf}'m) at constant ¢

08 P AdaHAT-no-reg: fix regularization
552 term R (Mt, M<t) at constant 0

0.7

s HAT
% — RIATIER Results: both underperform AdaHAT but
o5 L A0 sum outperform HAT
0 5 10 15 20 7\[5 30 35 40 45 50

Conclusions: both information (parameter importance, network sparsity) play crucial
roles for an adaptive extension of HAT.

24 /28

Hyperparameters

1.0 AdaHAT introduces only one additional
hyperparameter:

« — overall intensity of gradient
adjustment

a = 5e-7

m— = 9e-7
0.7] == a=1e6
— = 2€-6
m— = 5e-6

a=1les Results: oo = 1076 is optimal.

0.6
0

Conclusions:

P Neither small nor large gradient adjustment balances the stability-plasticity
trade-off, thus underperforms

P> The optimal is still a relatively small value, indicating the importance to design a
proper and well-guided adjustment rate

25 /28

Conclusions

26/28

Conclusions

Existing architecture-based approaches (like HAT):

P Tend to tilt the stability-plasticity trade-off towards stability
P Suffer from insufficient network capacity problem in long sequence of tasks

Our proposed AdaHAT:

P> Balances the trade-off in an adaptive adjustment mechanism

P> Also retains maximum stability benefits before the network capacity limit

P> Effectively leverages information about previous tasks which was seldom used in
architecture-based approaches

P All of them leads to better performance than HAT

Future work:

P> Explore and exploit more subtle information about previous tasks

27 /28

Thank You

Thank you for your attention!

Please feel free to ask any questions or reach out to us at:
wangpengxiang@stu.pku.edu.cn
Project page:
https://pengxiang-wang.com /projects/continual-learning-arena

GitHub:
https://github.com /pengxiang-wang/continual-learning-arena

*’ ¢ }‘Jf_ >4 Elic University of
UNENE St M T R

28/28

wangpengxiang@stu.pku.edu.cn
https://pengxiang-wang.com/projects/continual-learning-arena
https://github.com/pengxiang-wang/continual-learning-arena

	Introduction
	Related Work
	Methodology
	Experiments
	Conclusions

