clarena.callbacks.pylogger
The submodule in callbacks
for PyloggerCallback
.
1r""" 2The submodule in `callbacks` for `PyloggerCallback`. 3""" 4 5__all__ = ["PyloggerCallback"] 6 7import logging 8 9from lightning import Callback, Trainer 10 11from clarena.cl_algorithms import CLAlgorithm 12 13# always get logger for built-in logging in each module 14pylogger = logging.getLogger(__name__) 15 16 17class PyloggerCallback(Callback): 18 r"""Pylogger Callback provides additional logging for during continual learning progress. 19 20 Put logging messages here if you don't want to mess up the `CLAlgorithm` (`LightningModule`) with a huge amount of logging codes. 21 """ 22 23 def on_fit_start(self, trainer: Trainer, pl_module: CLAlgorithm) -> None: 24 r"""Log messages for the start of training task.""" 25 pylogger.info("Start training task %s!", pl_module.task_id) 26 27 def on_train_end(self, trainer: Trainer, pl_module: CLAlgorithm) -> None: 28 r"""Log messages for the end of training task.""" 29 pylogger.info("Finish training task %s!", pl_module.task_id) 30 31 def on_test_start(self, trainer: Trainer, pl_module: CLAlgorithm) -> None: 32 r"""Log messages for the start of testing task.""" 33 pylogger.info( 34 "Start testing task %s on all previous and current tasks!", 35 pl_module.task_id, 36 ) 37 38 def on_test_end(self, trainer: Trainer, pl_module: CLAlgorithm) -> None: 39 r"""Log messages for the end of testing task.""" 40 pylogger.info( 41 "Finish testing task %s on all previous and current tasks!", 42 pl_module.task_id, 43 )
class
PyloggerCallback(lightning.pytorch.callbacks.callback.Callback):
18class PyloggerCallback(Callback): 19 r"""Pylogger Callback provides additional logging for during continual learning progress. 20 21 Put logging messages here if you don't want to mess up the `CLAlgorithm` (`LightningModule`) with a huge amount of logging codes. 22 """ 23 24 def on_fit_start(self, trainer: Trainer, pl_module: CLAlgorithm) -> None: 25 r"""Log messages for the start of training task.""" 26 pylogger.info("Start training task %s!", pl_module.task_id) 27 28 def on_train_end(self, trainer: Trainer, pl_module: CLAlgorithm) -> None: 29 r"""Log messages for the end of training task.""" 30 pylogger.info("Finish training task %s!", pl_module.task_id) 31 32 def on_test_start(self, trainer: Trainer, pl_module: CLAlgorithm) -> None: 33 r"""Log messages for the start of testing task.""" 34 pylogger.info( 35 "Start testing task %s on all previous and current tasks!", 36 pl_module.task_id, 37 ) 38 39 def on_test_end(self, trainer: Trainer, pl_module: CLAlgorithm) -> None: 40 r"""Log messages for the end of testing task.""" 41 pylogger.info( 42 "Finish testing task %s on all previous and current tasks!", 43 pl_module.task_id, 44 )
Pylogger Callback provides additional logging for during continual learning progress.
Put logging messages here if you don't want to mess up the CLAlgorithm
(LightningModule
) with a huge amount of logging codes.
def
on_fit_start( self, trainer: lightning.pytorch.trainer.trainer.Trainer, pl_module: clarena.cl_algorithms.CLAlgorithm) -> None:
24 def on_fit_start(self, trainer: Trainer, pl_module: CLAlgorithm) -> None: 25 r"""Log messages for the start of training task.""" 26 pylogger.info("Start training task %s!", pl_module.task_id)
Log messages for the start of training task.
def
on_train_end( self, trainer: lightning.pytorch.trainer.trainer.Trainer, pl_module: clarena.cl_algorithms.CLAlgorithm) -> None:
28 def on_train_end(self, trainer: Trainer, pl_module: CLAlgorithm) -> None: 29 r"""Log messages for the end of training task.""" 30 pylogger.info("Finish training task %s!", pl_module.task_id)
Log messages for the end of training task.
def
on_test_start( self, trainer: lightning.pytorch.trainer.trainer.Trainer, pl_module: clarena.cl_algorithms.CLAlgorithm) -> None:
32 def on_test_start(self, trainer: Trainer, pl_module: CLAlgorithm) -> None: 33 r"""Log messages for the start of testing task.""" 34 pylogger.info( 35 "Start testing task %s on all previous and current tasks!", 36 pl_module.task_id, 37 )
Log messages for the start of testing task.
def
on_test_end( self, trainer: lightning.pytorch.trainer.trainer.Trainer, pl_module: clarena.cl_algorithms.CLAlgorithm) -> None:
39 def on_test_end(self, trainer: Trainer, pl_module: CLAlgorithm) -> None: 40 r"""Log messages for the end of testing task.""" 41 pylogger.info( 42 "Finish testing task %s on all previous and current tasks!", 43 pl_module.task_id, 44 )
Log messages for the end of testing task.