AdaHAT: Adaptive Hard Attention to the Task in Task-Incremental Learning

Pengxiang Wang¹, Hongbo Bo^{2,3}, Jun Hong⁴, Weiru Liu³, Kedian Mu¹

¹ Peking University, School of Mathematical Sciences, Beijing, China wangpengxiang@stu.pku.edu.cn

- ² Newcastle University, Population Health Sciences Institute, Newcastle, UK
- ³ University of Bristol, School of Engineering Mathematics and Technology, Bristol, UK

⁴ University of the West of England, School of Computing and Creative Technologies, Bristol, UK

Problem Definition

Continual Learning Scenario

Continual Learning (CL): machine learning paradigm, learning a sequence of tasks $t = 1, \dots, N$ in order, with datasets $D^t = \{x^t, y^t\}$ Task-Incremental Learning (TIL): continual learning scenario, aim to train a model f that performs well on all learned tasks

$$\max_{f} \sum_{t=1}^{N} \operatorname{metric}(f(x^{t}), y^{t}), \{x^{t}, y^{t}\} \in D^{t}$$

Key assumptions when training and testing task *t*:

- No access to the whole data from previous tasks $1, \dots, t-1$
- Testing on all seen tasks $1, \dots, t$
- For TIL testing, task ID *t* of each test sample is known by the model

Proposed Approach

Stability-Plasticity Trade-Off

We must trade off between **stability** and **plasticity**, to get higher performance averaged on all tasks:

	Model Change After New Tasks	Performance
Stability	Not too much	Higher on previous tasks
Plasticity	A lot	Higher on new tasks

Vanilla algorithms (Fixed, Finetuning) break the S-P balance.

CL Algorithms, such as replay, regularization, gradient-based methods, trade off S-P balance in different ways, using certain form of information from previous tasks.

Motivation

Limitations on Architecture-based Methods

Architecture-based Methods

- Dedicate parameters in different • parts of a network to tasks
- Fix the network parameters learned in previous tasks
- Use network nature, seldom use

20000

Iteration

10000

30000

10

10-

10-

10-

10-

10-

10-

10-

NC

HAT hard gradient clipping	AdaHAT soft gradient clipping
$g'_{l,ij} = a_{l,ij} \cdot g_{l,ij}, a_{l,ij} \in \{0, 1\}$	$g'_{l,ij} = a^*_{l,ij} \cdot g_{l,ij}, a^*_{l,ij} \in [0, 1]$
Either 0 or 1, means whether weights nasked by previous tasks	Allow small adjustment on previous tasks with a rate $a_{l,ij}^*$ for more plasticity

 i_j is the modified (clipped) gradient from original gradient $g_{l,ij}$ calculated during backpropagation for weight i, j in layer l.

Information Guided Adaptively

$$a_{l,ij}^{*} = \frac{r_{l}}{\min\left(m_{l,i}^{$$

Adjustment rate uses information direct from HAT architecture

- **Parameter Importance:** more previous tasks masked = more important = less adjustment. Indicated by summative mask $m_l^{<t,sum}$
- **Network Sparsity**: more unmasked weights available for new • tasks= less need for adjustment. Indicated by mask sparsity reg loss

$$R(\mathbf{M}^{t}, \mathbf{M}^{< t}) = \frac{\sum_{l} \sum_{i} m_{l,i}^{t} (1 - m_{l,i}^{< t})}{\sum_{l} \sum_{i} (1 - m_{l,i}^{< t})}$$

Experiments

Table 1. performance (mean \pm std) and S-P trade-off metrics of different approaches on the two datasets (5 runs, 20 tasks).

Dataset	Approaches	AA(%)	FR (%)	BWT(%)	FWT (%)
Permuted MNIST	Finetuning (SGD)	32.62 ± 1.60	$ -73.78 \pm 1.84$	$ -68.10 \pm 1.68$	63.51 ± 0.03
	LwF	26.95 ± 1.80	-80.35 ± 2.08	-72.59 ± 1.91	62.04 ± 0.09
	EWC	52.25 ± 2.46	-51.38 ± 2.83	-42.04 ± 2.67	58.12 ± 0.15
	HAT	67.64 ± 1.27	-33.70 ± 1.46	-0.11 ± 0.18	32.49 ± 1.12
	AdaHAT	$ 79.90\pm2.40$	$ -19.43 \pm 2.76 $	$ -14.68 \pm 2.48 $	59.96 ± 0.09
	HAT-random	66.43 ± 1.21	-35.10 ± 1.39	-0.27 ± 0.49	31.4 ± 1.22
	HAT-const-alpha	68.08 ± 1.18	-33.20 ± 1.36	$-1 * e^{-3} \pm 0.0$	32.92 ± 1.23
	HAT-const-1	48.83 ± 4.35	-55.14 ± 5.02	-49.68 ± 4.4	62.26 ± 0.21
Split CIFAR100	Finetuning (SGD)	24.34 ± 0.73	$ -91.66 \pm 1.32$	$ -54.0 \pm 1.0$	53.1 ± 0.55
	LwF	34.56 ± 0.94	-70.91 ± 2.05	-48.03 ± 1.01	57.61 ± 0.4
	EWC	30.23 ± 1.61	-79.84 ± 3.13	-54.05 ± 1.28	59.20 ± 0.5
	HAT	32.44 ± 1.58	-74.71 ± 3.37	-45.59 ± 1.49	53.11 ± 0.34
	AdaHAT	$ 38.74\pm2.24$	$ -62.37\pm4.64$	$\left -42.11\pm2.02\right $	56.33 ± 0.82
	HAT-random	31.41 ± 1.29	-76.98 ± 2.45	-48.8 ± 1.33	52.76 ± 0.57
	HAT-const-alpha	32.16 ± 2.48	-75.04 ± 5.16	-44.49 ± 2.57	51.86 ± 0.82
	HAT-const-1	32.4 ± 1.4	-75.58 ± 3.08	-48.8 ± 1.72	56.3 ± 0.36

- information from previous tasks
- E.g. **HAT** (Hard Attention to Task)

Limitations on HAT

Parameter space runs out soon after learning a *fixed* number of tasks (usually < 10), that leads to problems:

Insufficient network capacity

- No parameters to learn new tasks
- Sacrifice plasticity for stability
- Perform well on first several tasks, but bad at long sequences of tasks

Not adaptive to task sequences

- Manually tuned hyperparameters to allocate network capacity
- In CL, bear in mind that *we never* know how many tasks in future!

AdaHAT achieves better average performance over tasks (N = 20), by a better S-P balance

AA (Average Accuracy over tasks): main performance Forgetting Ratio (FR): secondary performance BWT (Backward Transfer): stability metric FWT (Forward Transfer): plasticity metric

AdaHAT performs well particularly on long sequences of tasks (N = 50)

Ablation study shows both guiding information are vital