AdaHAT: Adaptive Hard Attention to the Task
in Task-Incremental Learning
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Problem Definition Proposed Approach
Continual Learning Scenario We propose AdaHAT, an extension to HAT with following mechanisms.
Continual Learning (CL): machine learning paradigm, learning a Task 1 Task 2 Task 3 Task 4
sequence of tasks t = 1, ---, N in order, with datasets Dt = {x¢, y*} | |
Task-Incremental Learning (TIL): continual learning scenario, F“é}aﬁji‘i”t;”k Hl‘(él;iitivtvyork m? Medg:,ﬁfttywork M? LO(V:V;;:C?:; | m

aim to train a model f that performs well on all learned tasks
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Key assumptions when training and testing task ¢: 00000 00000 OO0O0O00 00000
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« No access to the whole data from previous tasks 1,---,t — 1 P ~ P ~ P
» Testing on all seen tasks 1, -+, t @ eYeYeYe)o) 0000 ggggg\ >
 For TIL testing, task ID t of each test sample is known by the 8888 8 88888 doo00oD =
model adjustment 00000 00000 COO0OO0D >
Stability-Plasticity Trade-Off rate [oeieiee ) [(eeieiere ) | eeees) =
We must trade off between stability and plasticity, to get higher .
performance averaged on all tasks: Small Adjustments Allowed
Model Change After New Tasks Performance H,’AT -- hard gradient clipping Ada,HAT -; soft gradient clipping
Stability Not too much Higher on previous tasks 9uij = ij* Guij» i € 10,1} Iu4j = Wiy Guij iy € 10,11
Plasticity Alot Higher on new tasks Either 0 or 1, means whether weights  Allow small adjustfnent on previou§ |
masked by previous tasks tasks with a rate a;;; for more plasticity
Vanilla a]g()rithms (Fixed, Finetuning) break the S-P balance. 1o e mmodlifed (olipped) gradicat eom original gadient gy calemlateel daring backprapagation for weight i j m Tayer L
Mechanism  S-P Balance Information Guided Adaptively
Fixed m(f:ixeidalne“ter oo wrdh o a;;; = i n= i
13 't : <t,sum __<t,sum ’ R(Mt M<t
task 1 stability min (ml’i RO ) + 17 (M¢, )+ €
Init from Too much on Adjustment rate uses information direct from HAT architecture
Fine- plasticity - Parameter Importance: more previous tasks masked = more
: last task t — . : : : . <t,sum
tuning 1 (Catastrophic important = less adjustment. Indicated by summative mask m;™"
Forgetting) - Network Sparsity: more unmasked weights available for new
CL Algorithms, such as replay, regularization, gradient-based tasks= less need for adjustment. Indicated by mask sparsity reg loss

methods, trade off S-P balance in different ways, using certain form Yy ximy (1 —my)

. . . R(Mt, M<Y) =
of information from previous tasks. Y2 (1—m)
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Motivation Experiments
. . . . Table 1. performance (mean =+ std) and S-P trade-off metrics of different approaches
Limitations on Architecture-based Methods o o b ctanots (5 Tans. 20 tasks)
Architecture_based MethOdS m;), task Dataset |Approaches(SG )|AA(%) |FR (%) I BWT (%) FWT (%)
. i ) Finetuning D)|32.62 +1.60 |—73.78 +1.84 |—68.10+ 1.68 |63.51 = 0.03
 Dedicate parameters 1n different ]ll]]]]] I]]]]]ll]]] m ! LwF 26.95 + 1.80 |—80.35 -+ 2.08 |—72.59 4+ 1.91 |62.04 -+ 0.09
ts of t k to task Il"lllm'“_.ll..m ) EWC 52.25 + 2.46 |—51.38 +2.83 |—42.04 4+ 2.67 |58.12 + 0.15
parts ol a network 1o tasSks Permuted |HAT 67.64 -+ 1.27 |—-33.70+£1.46 |—0.11+0.18 [32.49 + 1.12
. T LTI L e MNIST |AdaHAT 79.90 = 2.40|—19.43 =+ 2.76| —14.68 = 2.48(59.96 =+ 0.09
Fix the network parameters learned I]= HAT-random 66.43 + 1.21 |—35.10+ 1.39 |—0.27 +0.49 |31.4 + 1.22
. . .-Il.-.I“ 4 HAT-const-alpha [68.08 +1.18 |—33.204+1.36 |—1*e 3+ 0.0 |32.92 «+ 1.23
111 Previous tasks ] HAT-const-1 48.83 4+ 4.35 |—55.14+ 5.02 |—49.68 4.4 |62.26 + 0.21
« Use network nature, seldom use Finetuning (SGD)|24.34 = 0.73 |—91.66 = 1.32 |—54.0 = 1.0 53.1 & 0.55
. . . ._]_ll 6 LwF 34.56 + 0.94 |—70.91 «+ 2.05 |—48.03 + 1.01 |57.61 «+ 0.4
information from previous tasks EWC 30.23 +1.61 |—79.84 4+ 3.13 |—-54.05 4+ 1.28 |59.20 + 0.5
. . .-_- 7 Split HAT 32.44 4+ 1.58 |—-74.71 +3.37 |—-45.59 4+ 1.49 |53.11 + 0.34
E.g. HAT (Hard Attention to TaSk) CIFAR100| AdaFH AT 38.74 4+ 2.24| —62.37 4+ 4.64|—42.11 &+ 2.02|56.33 &+ 0.82
.-_- 8 HAT-random 31.41+1.29 |-76.98+2.45 |—-48.84+1.33 |52.76 4+ 0.57
Limitations on HAT HAT-const-alpha [|32.16 £ 2.48 |—75.04 4+ 5.16 |—44.49 4+ 2.57 |51.86 == 0.82
.__- 9 HAT-const-1 32.4 4+ 1.4 _75.58 4 3.08 |—48.8-+1.72 |56.3 & 0.36
Pararpeter s:pace runs out soon after I - > A hverage Acuracy ove tasks): man perormance
learning a fixed number of tasks . AdaHAT achieves better average oo v mo
performance over tasks (N = 20),

(usually < 10), that leads to problems:

" by a better S-P balance
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Insufficient network capacity
« No parameters to learn new tasks

AdaHAT performs well particularly

 Sacrifice plastlclty for stability on long sequences of tasks (N = 50) =
« Perform well on first several tasks, 10° N [ —
lon n f task o | i =
but bad at long sequences of tasks " AdaHAT network _ | =ty
Not adaptive to task sequences 10 : — capacity is %5 T 5 W % W H W B s
* Manually tuned hyperparameters to ® 10+ — wranssre  cONSUmMed inan .
allocate network capacity 10° adaptive way Ablation study shows
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