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Problem Definition

Continual Learning (CL): machine learning paradigm, learning a 
sequence of tasks 𝑡 = 1,⋯ ,𝑁	in order, with datasets 𝐷! = 𝑥! , 𝑦!
Task-Incremental Learning (TIL): continual learning scenario, 
aim to train a model 𝑓 that performs well on all learned tasks
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metric 𝑓 𝑥" , 𝑦" , 𝑥", 𝑦" ∈ 𝐷"

Key assumptions when training and testing task 𝑡:
• No access to the whole data from previous tasks 1,⋯ , 𝑡 − 1
• Testing on all seen tasks 1,⋯ , 𝑡
• For TIL testing, task ID 𝑡 of each test sample is known by the 

model

Continual Learning Scenario

We must trade off between stability and plasticity, to get higher 
performance averaged on all tasks:

Vanilla algorithms (Fixed, Finetuning) break the S-P balance.

CL Algorithms, such as replay, regularization, gradient-based 
methods, trade off S-P balance in different ways, using certain form 
of information from previous tasks.

Stability-Plasticity Trade-Off

Limitations on Architecture-based Methods

Mechanism S-P Balance
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Model Change After New Tasks Performance
Stability Not too much Higher on previous tasks
Plasticity A lot Higher on new tasks
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Proposed Approach

Architecture-based Methods
• Dedicate parameters in different 

parts of a network to tasks
• Fix the network parameters learned 

in previous tasks
• Use network nature, seldom use 

information from previous tasks
• E.g. HAT (Hard Attention to Task)

Limitations on HAT
Parameter space runs out soon after 
learning a fixed number of tasks 
(usually < 10), that leads to problems:
Insufficient network capacity
• No parameters to learn new tasks
• Sacrifice plasticity for stability
• Perform well on first several tasks, 

but bad at long sequences of tasks
Not adaptive to task sequences
• Manually tuned hyperparameters to 

allocate network capacity
• In CL, bear in mind that we never 

know how many tasks in future!

AA (Average Accuracy over tasks): main performance
Forgetting Ratio (FR): secondary performance
BWT (Backward Transfer): stability metric
FWT (Forward Transfer): plasticity metric

AdaHAT achieves better average
performance over tasks (𝑵 = 𝟐𝟎), 
by a better S-P balance

AdaHAT network 
capacity is 
consumed in an 
adaptive way

Small Adjustments Allowed
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Adjustment rate uses information direct from HAT architecture
• Parameter Importance: more previous tasks masked = more 

important = less adjustment. Indicated by summative mask 𝑚&
'",)*+ 

• Network Sparsity: more unmasked weights available for new 
tasks= less need for adjustment. Indicated by mask sparsity reg loss 
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Information Guided Adaptively

HAT -- hard gradient clipping AdaHAT -- soft gradient clipping
𝑔#,$&' = 𝑎#,$& ⋅ 𝑔#,$& , 	𝑎#,$&∈ {0, 1} 𝑔#,$&' = 𝑎#,$&∗ ⋅ 𝑔#,$& , 𝑎#,$&∗ ∈ 0, 1  

Either 0 or 1, means whether weights 
masked by previous tasks

Allow small adjustment on previous 
tasks with a rate 𝑎#,$&∗  for more plasticity

𝑔!,#$% 	is the modified (clipped) gradient from original gradient	𝑔!,#$ calculated during backpropagation for weight 𝑖, 𝑗 in layer 𝑙.

AdaHAT performs well particularly 
on long sequences of tasks (𝑵 = 𝟓𝟎) 

Ablation study shows 
both guiding 
information are vital
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Table 1. performance (mean ± std) and S-P trade-off metrics of different approaches
on the two datasets (5 runs, 20 tasks).

Dataset Approaches AA(%) FR (%) BWT(%) FWT (%)

Permuted
MNIST

Finetuning (SGD) 32.62± 1.60 −73.78± 1.84 −68.10± 1.68 63.51± 0.03
LwF 26.95± 1.80 −80.35± 2.08 −72.59± 1.91 62.04± 0.09
EWC 52.25± 2.46 −51.38± 2.83 −42.04± 2.67 58.12± 0.15
HAT 67.64± 1.27 −33.70± 1.46 −0.11± 0.18 32.49± 1.12
AdaHAT 79.90± 2.40 −19.43± 2.76 −14.68± 2.48 59.96± 0.09
HAT-random 66.43± 1.21 −35.10± 1.39 −0.27± 0.49 31.4± 1.22
HAT-const-alpha 68.08± 1.18 −33.20± 1.36 −1 ∗ e−3 ± 0.0 32.92± 1.23
HAT-const-1 48.83± 4.35 −55.14± 5.02 −49.68± 4.4 62.26± 0.21

Split
CIFAR100

Finetuning (SGD) 24.34± 0.73 −91.66± 1.32 −54.0± 1.0 53.1± 0.55
LwF 34.56± 0.94 −70.91± 2.05 −48.03± 1.01 57.61± 0.4
EWC 30.23± 1.61 −79.84± 3.13 −54.05± 1.28 59.20± 0.5
HAT 32.44± 1.58 −74.71± 3.37 −45.59± 1.49 53.11± 0.34
AdaHAT 38.74± 2.24 −62.37± 4.64 −42.11± 2.02 56.33± 0.82
HAT-random 31.41± 1.29 −76.98± 2.45 −48.8± 1.33 52.76± 0.57
HAT-const-alpha 32.16± 2.48 −75.04± 5.16 −44.49± 2.57 51.86± 0.82
HAT-const-1 32.4± 1.4 −75.58± 3.08 −48.8± 1.72 56.3± 0.36

We apply a gradient clipping to parameters with a specified value of 0.001
and a parameter decay with a factor of 0.00035 for all approaches excluding
those with hard attention mechanism. The parameter decay and the gradient
clipping are not compatible with HAT, because the gradient-adjustment process
in these approaches can make updates to those parameters that are meant to be
static in HAT, which can cause potential forgetting.

4.2 Results

We present our experimental results on sequences of 20 tasks in Table 1. Our
proposed AdaHAT demonstrates the best performance in terms of average ac-
curacy and forgetting rate, outperforming all baseline methods, which indicates
the superiority of AdaHAT in incrementally learning long sequences of tasks.
We observe that HAT and Fine-tuning have extreme BWTs and FWTs (i.e.
high BWT with low FWT, or low BWT with high FWT), which indicates an
imbalance between stability and plasticity trade-offs. The relatively reasonable
BWT and FWT of AdaHAT are neither extremely large nor small, which indi-
cates it achieves a better balance in the trade-off between stability and plasticity.
In the Split CIFAR100 dataset, AdaHAT even has both higher stability and plas-
ticity. We can observe from various approaches that higher performance is often
achieved by striking a better balance between BWT and FWT, which shows the
importance of balancing the trade-off between stability and plasticity for better
performance.

We propose AdaHAT, an extension to HAT with following mechanisms.

𝑁𝐶 is the average adjustment rate 
over all static parameters
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